

CHRISTOPH ADAMI

INTRODUCTION TO

ARTIFICIAL LIFE

CD-ROM ’,
INCLUDED

é\'\“e

:

5’9
FILE

Christoph Adami

California Institute of Technology
WK. Kellogg Radiation Laboratory
Pasadena, CA 91125

USA

Publisher: Allan M. Wylde

Publishing Associate: Keisha Sherbecoe
Product Manager: Ken Quinn
Production Supervisor: Steven Pisano
Manufacturing Supervisor: Joe Quatela
Cover Illustration: Jim Barry

Library of Congress Cataloging-in-Publication Data
Adami, Christoph.
Introduction to artificial life / Christoph Adami.
p. cm.
Includes bibliographical references (p.) and index.
ISBN 0-387-94646-2 (hardcover : alk. paper)
1. Artificial intelligence. 2. Artificial life. 3. Neural
networks (Computer science) 1. Title
QA35.A3 1998
570'.13—dc21 97-37605

Printed on acid-free paper.

© 1998 Springer-Verlag New York, Inc.
TELOS®, The Electronic Library of Science, is an imprint of Springer-Verlag New York, Inc.

This Work consists of a printed book and a CD-ROM packaged with the book, both of which are protected
by federal copyright law and international treaty. The book may not be translated or copied in whole or in
part without the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue,
New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis.
For copyright information regarding the CD-ROM, please consult the printed information packaged with
thec CD-ROM in the back of this publication, and which is also stored as a "*readme"* file on the CD-
ROM. Use of the printed version of this Work in connection with any form of information storage and
retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known,
or hereinafter developed, other than those uses expressly granted in the CD-ROM copyright notice and
disclaimer information, is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the
former are not especially identified, is not to be taken as a sign that such names, as understood by
the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone. Where those
designations appear in the book and Springer-Verlag was aware of a trademark claim, the designations
follow the capitalization style used by the manufacturer.

Typeset from the author's LaTeX files by Integre Technical Publishing Co., Inc., Albuquerque, NM.
Printed and bound by Hamilton Printing Co., Rensselaer, NY.
Printed in the United States of America.

9 8 7 6 5 4 3 2 (Corrected second printing, 1999)

ISBN 0-387-94646-2 Springer-Verlag New York Berlin Heidelberg SPIN 10728260

-~ lleLo

TELOS, The Electronic Library of Science, is an imprint of Springer-Verlag
New York. Its publishing program encompasses the natural and physical
sciences, computer science, mathematics, economics, and engineering. All
TELOS publications have a computational orientation to them, as TELOS'
primary publishing strategy is to wed the traditional print medium with the
emerging new electronic media in order to provide the reader with a truly in-
teractive multimedia information environment. To achieve this, every TELOS
publication delivered on paper has an associated electronic component. This
can take the form of book/diskette combinations, book/CD-ROM packages,
books delivered via networks, electronic journals, newsletters, plus a multi-
tude of other exciting possibilities. Since TELOS is not committed to any one
technology, any delivery medium can be considered. We also do not foresee
the imminent demise of the paper book, or journal, as we know them. Instead
we believe paper and electronic media can coexist side-by-side, since both offer
valuable means by which to convey information to consumers.

The range of TELOS publications extends from research level reference works
to textbook materials for the higher education audience, practical handbooks
for working professionals, and broadly accessible science, computer science,
and high technology general interest publications. Many TELOS publications
are interdisciplinary in nature, and most are targeted for the individual buyer,
which dictates that TELOS publications be affordably priced.

Of the numerous definitions of the Greek word “telos” the one most represen-
tative of our publishing philosophy is “to turn,” or “turning point” We perceive
the establishment of the TELOS publishing program to be a significant step
forward towards attaining a new plateau of high quality information packag-
ing and dissemination in the interactive learning environment of the future.
TELOS welcomes you to join us in the exploration and development of this
exciting frontier as a reader and user, an author, editor, consultant, strategic
partner, or in whatever other capacity one might imagine.

TELOS, The Electronic Library of Science
Springer-Verlag New York, Inc.

THE
ELECTRONIC
® LIBRARY

OF
SCIENCE

THE
ELECTRONIC
® LIBRARY

ELOS :
SCIENCE

TELOS Diskettes

Unless otherwise designated, computer diskettes packaged with TELOS publi-
cations are 3.5” high-density DOS-formatted diskettes. They may be read by any
1BM-compatible computer running DOS or Windows. They may also be read
by computers running NEXTSTEP, by most UNIX machines, and by Macintosh
computers using a file exchange utility.

In those cases where the diskettes require the availability of specific software
programs in order to run them, or to take full advantage of their capabili-
ties, then the specific requirements regarding these software packages will be
indicated.

TELOS CD-ROM Discs

For buyers of TELOS publications containing CD-ROM discs, or in those cases
where the product is a stand-alone CD-ROM, it is always indicated on which spe-
cific platform, or platforms, the disc is designed to run. For example, Macintosh
only; Windows only; cross-platform, and so forth.

TELOSpub.com (Online)

Interact with TELOS online via the Internet by setting your World-Wide-Web
browser to the URL: http://www.telospub.com.

The TELOS Web site features new product information and updates, an online
catalog and ordering, samples from our publications, information about TELOS,
data-files related to and enhancements of our products, and a broad selection
of other unique features. Presented in hypertext format with rich graphics, it's
your best way to discover what's new at TELOS.

TELOS also maintains these additional Internet resources:

gopher://gopher.telospub.com
ftp://fip.telospub.com

For up-to-date information regarding TELOS online services, send the one-line
e-mail message:

send info

to: info@ TELOSpub.com.

Preface

What makes living systems alive? This is a question that has been asked
for as long we have been contemplating the world around us, and despite
breathtaking advances in physics, chemistry, and genetics in this cen-
tury, it is still a question that eschews a definite answer. Historically, life
and the physical world have been studied largely independently, with
little overlap. As this millenium comes to a close, it is apparent that our
knowledge of the physical inanimate world dwarfs what we have learned
about the living state.

Life is so diverse and complex that it seems impossible to extract
general principles that might govern each and any living system. The
physical world, on the other hand—while also displaying diversity and
complexity in its phenomena—yields to analysis, because we can decon-
struct complex physical systems and study aspects of them in isolation.
Such an approach appears to be hopeless as far as living systems are con-
cerned. In almost all cases, a deconstructed living system is no longer
alive. When taking apart life, it disappears in its constituents. To make
matters worse, the simplest living system, namely that which has been a
precursor to all living systems here, was replaced by much more compli-
cated ones over three billion years ago. Attempts to reconstruct it are as
yet unsuccessful and will probably remain so for some time. If we want
to learn more about the general principles, we need an instance of life
that is not of this earth to compare and extract the similarities and dif-

vii

viii

Preface

ferences. While the exploration of the planets and asteroids of our solar
system may ultimately yield such all-important evidence, at present we
are faced with learning about life from only one instance: the terrestrian
variety. :

Fortunately, it appears that the unrelenting growth of the power of
modern computers we are witnessing has opened up an entirely un-
expected avenue: the construction of an artificial living system. This
has created the possibility of designing and conducting dedicated ex-
periments with such systems that could otherwise only be performed
with much hardship, if at all. At the same time, such artificial living sys-
tems have rekindled interest in the idea of formulating a set of “general
principles of the living state” that are quite independent of a particular
implementation. Such a theory of simple living systems should equally
well predict the outcome of experiments performed on the protean liv-
ing system that gave rise to life on earth (the speculative RNA world),
putative ancient life on Mars, or those worlds in which information is
coded in binary strings compiled to programs that have the ability to self-
replicate. The latter is an instance of Artificial Life. In pursuing such an
endeavor, we need to extricate those aspects of livings systems that are
independent of the particular substrate (carbon-based vs. computational
chemistry) from those that clearly are not. This approach assumes that
there is a universality in the processes that give rise to life, and that given
this universality, life can be implemented in any medium that can give
rise to such processes. The idea of universality has been very fruitful in
the understanding of the principles of chaos, for example. The hope is
that the simplest artificial living systems treated in this book can do for
our understanding of the basic principles governing biological life what
the one-dimensional iterated map has done for chaos theory.

There is no question that this new field of Artificial Life will necessar-
ily be an interdisciplinary one, straddling the classical fields of biology,
chemistry, and physics, as well as the more recent field of computer
science. The study of artificial living systems requires tools that are
not in the toolbox of the average biologist—nor, for that matter, of any
other scientist who studies only one particular discipline. In this book,
I discuss such tools and concepts and apply them when possible. The
subjects treated range from information theory and statistical mechanics,
included as primers with applications to living systems; biochemistry of
in vitro evolution; computational complexity in cellular automata and

Preface

complexity measures for symbolic sequences; theory and phenomenol-
ogy of self-organized criticality, pcrcolation.theory, fitness landscapes;
and then finally dedicated computational experiments carried out with
the avida Artificial Life software included on this book’s CD-ROM. From
this vantage point, this book is truly an Introduction. However, the field
of Artificial Life is much broader than the subject matter broached in this
book. Only a glimpse of the panoply of subjects that constitute the “braid
of ALife” is offered in the introductory chapters. For a more complete
reference, the reader should consult the recent overview [Langton, 1995].

Notwithstanding the range of scientific disciplines, a single unifying
concept binds all those disparate views of life together: that the phenom-
ena we observe, and which seem magical at times, are rooted in physical
theory and can be understood using such tools. At the same time, we
need to understand that we are only at the beginning of an endeavor that
will shape the science of the twenty-first century: understanding biology
using the tools of the science of the twentieth century, namely physics
and computers. It is hoped that the interplay between theory and ex-
periment, the two pillars of scientific endeavor that have supported the
triumph of physics, will lead us further along the road to discover the gen-
eral principles of the living state, but also to uncover aspects of particular
complex systems that have remained hidden, obscured by the difficulty
to perform dedicated experiments.

This book has grown out of lectures given to advanced undergraduate-
and graduate-level students in Computation and Neural Systems and in
Physics at Caltech since 1995. Most of the chapters should be accessible
to such a target audience. Chapters 6-8 as well as 10-11 contain material
that will also be of interest to the more specialized reader. Each chap-
ter closes with an overview of the subject matter treated and the main
conclusions reached. These overviews can also be read before embarking
on each chapter. Generally, the material can be mastered armed only
with a background in fundamental methods of statistical physics, knowl-
edge of basic computer architecture and programming skills, as well as
a rudimentary knowledge of biology. An extensive bibliography points
to sources that go into more depth on the topics treated in the more
advanced chapters.

Preface

Acknowledgements

This book is the result of my fascination with the power of Darwin’s
principles of evolution, first transplanted into the computer for everybody
to see by Tom Ray in his tierra software. I have been, as have the majority of
students that have taken my class, awed by the simplicity of the principles
and the complexity they entail. Observing populations of self-replicating
computer programs adapt to an artificial world has infallibly elicited the
same sense of wonder in the observer: “Evolution works!” Besides Tom
Ray, there are a number of people who deserve special thanks for leading
me on to and along this path. Steve Koonin slipped Tom Ray's paper into
a stack of literature that he thought would arouse my curiosity and wile
away the time on a flight from Los Angeles to New York. Even though
he may not have foreseen then where this would lead, he has steadfastly
supported and encouraged my explorations in this arena (even though the
focus at the Kellogg Radiation Laboratory is generally nuclear physics).

The first version of the avida software was designed in collaboration
with C. Titus Brown and Charles Ofria, and written by Titus. This first
attempt taught us a great deal about the problems associated with “living
software” and paved the way for Charles to write the definitive version
included in this book. To both Titus and Charles I owe an immense
debt of gratitude, on the one hand because 1 do not have the time and
perseverance to write and test such a complex piece of software, on the
otherbecause they have been loyal companions on this trek, and a critical
conscience at the same time. The appeal of this book draws largely from
the avida software that comes with it. All major portions of it have been
written and maintained by Charles, a task that is sometimes unrewarding
but for which he deserves my respect and my thanks. Portions of the
code have been contributed by Travis Collier, who also reliably helped in
preparing figures, and in the TAing of the course.

The porting of the code to the Windows environment was facilitated
by Dennis Adler of Microsoft Research in collaboration with Charles. I
would like to thank Dennis not only for his support of this effort, but also
for his inquisitiveness. I am grateful to colleagues, friends, and students
who have offered suggestions for improving the book or have contributed
to it by collaboration, especially Liubo Borissov, Titus Brown, Nicolas
Cerf, Johan Chu, Amy Forth, Mike Haggerty, Chris Langton, J6rg Lemm,

Preface

Charles Ofria, Heinz G. Schuster, Chuck Taylor, and all the students of
CNS/Phy 175. Any remaining misconceptions (and Germanisms), how-
ever, remain entirely my own. Thanks are also due to my publisher
Allan Wylde at TELOS, for his dedication to the project and the stoicism
maintained throughout, and to Keisha Sherbecoe for an always cheerful
attitude. Finally, I would like to thank Taylor Kelsaw for enduring the
slings and arrows of this adventure and accepting the toll it has taken on
time that was meant to be shared, as well as for his unflagging support
and encouragement.

Christoph Adami

Xi

Contents

Preface

Contents of the CD-ROM

1

2

Flavors of Artificial Life

1.1 Whither a Theory of the Living State?.
1.2 Emulation and Simulation
1.3 Carbon-Based Artificial Life
1.4 Turing and von Neumann Automata
1.5 Cellular Automata
1.6 Overview. e

Artificial Chemistry and Self-Replicating Code

2.1 Virtual Machines and Self-ReproducingCA
2.2 VirusesandCoreWorlds
2.3 ThetierraSystem
2.4 avida, amoeba, and the Originof Life
25 Overview Lo e

Introduction to Information Theory
3.1 Information TheoryandLife.
3.2 ChannelsandCoding

vii

xvii

NO N -

26
34

37
37
42
45
50
57

59
59
61

Xiii

Xiv

Contents
3.3 Uncertainty and Shannon Entropy B3
3.4 Joint and Conditional Uncertainty 66
3.5 Information, 70
3.6 Noiseless Coding R 73
3.7 Channel Capacity and Fundamental Theorem 75
3.8 Information Transmission Capacity for Genomes 80
39 OVerview e e e e 82
4 Statistical Mechanics and Thermodynamics 85
4.1 Phase Space and Statistical Distribution Function 86
4.2 Averages, Ergodicity, and the Ergodic Theorem 90
4.3 Thermodynamical Equilibrium, Relaxation 91
44 EnNErgy e 93
45 Entropyo 94
4.6 Second Law of Thermodynamics 99
4.7 Temperature 100
4.8 The Gibbs Distribution 102
4.9 Nonequilibrium Thermodynamics 104
4.10 First-Order Phase Transitions 107
411 Overview e 111
5 Complexity of Simple Living Systems 113
5.1 Complexity and Information 114
52 TheMaxwellDemon 116
5.3 Kolmogorov Complexity 123
5.4 Physical Complexity and the Natural Maxwell Demon . . 125
5.5 Complexityof tRNA 129
5.6 Complexity in Artificial Life 133
57 OVerview e e e e 136
6 Self-Organization to Criticality 139
6.1 Self-Organization and Sandpiles 140
6.2 SOCinForestFires 148
6.3 SOCinthe LivingState 151
6.4 Theoriesof SOC 164
6.5 Overview.o 172

Contents

7 Percolation

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

Site Percolation
Cluster Size Distribution . .«
Percolationin1D
Higher-Dimensional Euclidean Lattices
Percolation on the Bethe Lattice
ScalingTheory.
Percolation and Evolution
Overview e e e

8 Fitness Landscapes

8.1
8.2
8.3
8.4
8.5
8.6
8.7

Theoretical Formulation
Example Landscapes
Fractal Landscapes
Diffusive and Nondiffusive Processes
RNA Landscapes
Fitness Landscape inavida
Overview

9 Experiments with avida

9.1
9.2
9.3
9.4
9.5

Choice of Chemistry
A Simple Experiment
Experiments in Adaptation
Experiments with Species and Genetic Distance
Ooverview

10 Propagation of Information

10.1
10.2
10.3
10.4
10.5

Information Transport and Equilibrium

The Artificial Life Systemsanda
DiffusionandWaves
Comparison: Theory and Experiment.
overview e

11 Adaptive Learning at the Error Threshold

11.1
11.2
11.3
11.4

Information Processing at the Edge of Chaos
Adaptation to Computation inavida
Eigen's Error Threshold
Molecular Evolution as an IsingModel

225
226
230
240
244
247

249
249
251
253
260
264

Xv

XVi

Contents
11.5 The Race to the Error Threshold 285
11.6 Approach to Error Threshold inavida 289
11.7 Overview e e e e e 295
A The avida User’s Manual 297
Al Introduction 297
A.2 ABeginnersGuidetoavida. 300
A.3 Time Slicing and the Fitness Landscape 302
A4 Reproduction 308
A.5 The Virtual Computer 310
A6 Mutations e 320
A7 Installingavida 322
A8 TheTextInterface. 323
A.9 ConfiguringavidaRuns 333
A.10 GuidetoOutputFiles 339
A.11 SummaryofVariables 345
Al2 Glossary e 345
References 351
Index 361

Contents of the CD-ROM

The CD-ROM accompanying Introduction to Artificial Life contains files
and programs that are executable on a variety of platforms.

All files ending in .txt are readable across all platforms, as are the
Java applets and the HTML file al.html. It is recommended to begin
using the CD-ROM by first reading the legal.txt and readme.txt files, and
then pointing your browser toward al.html.

The avida software is provided for Windows95/NT and UNIX plat-
forms, but not for Macintosh. Several programs included on the CD-ROM
are written in C or C+ + and can be compiled on all platforms with a little
work. However, only source code is included for those, not executables.
A complete directory structure for the files on the CD can be found on
the CD-ROM itself.

Contents
o legal.txt Copyright, permissions, and disclaimers
e readme.txt Explanations about the CD-ROM
e al.html HTML file containing links, comments, and applets
for every chapter
e avida Directory containing all files to compile and execute

avida, as well as the manual in PostScript

Xvii

Xviii Contents of the CD-ROM

COver,jpg JPEG file of cover art
¢ MPEG Directory containing movie files

Percolation Directory containing files and programs

Sandpile Directory containing files and programs

The avida Software

Avida is the name of the Artificial Life “platform,” or experimental testbed,
which is used predominantly for experiments by the ALife group at Cal-
tech, and which is included on the CD-ROM accompanying this book. The
avida system was inspired by tierra (which was developed by Tom Ray in
1991). Ray’s construction is taken one step further in avida, as the latter
constitutes a bona fide experimental platform that is used to test ideas and
predictions relating to simple living systems. Moreover, such simple popu-
lations can be analyzed using methods of statistical physics, which allows
predictions about the global behavior of populations of self-replicating
strings from first principles.

Avida is the result of an attempt to construct the most simple system
that displays the basic properties of life. Simply put, avida is a population
of self-replicating strings of computer-code subject to random mutations,
adapting to a complex information-rich landscape.

Other Software

¢ Sandpile consists of C and C+ + programs that implement the 2D
sandpile of Bak, Tang, and Wiesenfeld.

e Percolation contains Java applets that implement 2D percolation on
Euclidean lattices.

e Movies contain MPEG movie-clips of waves of propagation in avida,
Karl Sims’s virtual creatures, and the self-replicating loops of Langton.
The clips about avida are also provided in QuickTime.

CHAPTER ONE

Flavors of Artificial Life

Life is a tale told by an idiot, full of sound and fury, signifying nothing.
W. Shakespeare

Progress in the study of living systems has historically been hampered
by the diversity and complexity of life itself, as well as the difficulty of
setting up controlled conditions in dedicated experiments. Ultimately,
most experiments with living systems that were geared towards under-
standing the living state have involved the deconstruction, or analysis
of said state. Scientists have not achieved, or dared to achieve, the con-
struction, or synthesis, of life from nonliving materials. Historically, the
thought itself has been heretic, and it was not until the early 1920s that
the idea of protean living systems, and thus the origin of life from nonliv-
ing materials, was proposed [Oparin, 1938; Haldane, 1929]. From then on,
efforts were mostly concentrated on showing how the main ingredients
of the living state, i.e., amino and hydroxy acids, can be formed under
circumstances thought to be prevalent on earth shortly after its forma-
tion. In now-famous experiments [Miller, 1953], a mixture of methane,
ammonia, water vapor, and hydrogen was pumped through a water solu-
tion and subjected to electrical discharges (to simulate lightning flashes
on earth), or ultraviolet light or heat. In all such experiments the amino

1 Flavors of Artificial Life

acids form readily and in abundance. However, the subsequent steps
from amino acids to polypetides, on to enzyme-driven metabolisms and
the replication of the genectic code, are still uncertain.

A combination of frustration with the current state of affairs cou-
pled with curiosity sparked by advances in technology has opened an
entirely new approach: the emulation, simulation, and construction of
living systems, collectively known as Artificial Life. While the modern era
of Artificial Life is usually traced back to the first conference by the same
name held at Los Alamos in 1988 [Langton, 1989, there is a longer history
that consists almost entirely of theoretical work. The advent of fast and
affordable computers with the capacity for storing vast amounts of data
undoubtedly led to the reemergence of the field, and to its diversification
as researchers have attacked more and more problems.

We begin our journey into the study of Artificial Life with a philo-
sophical inquiry, and ask what is the place and what would be the use of
a theory of the living state. Subsequently, we formulate such a principle
and discuss its purpose: to be proven wrong by new evidence, either from
extraterrestrial biology or from within. We continue in Section 1.2 by vis-
iting the main branches of Artificial Life that will not be studied here.
The intent is not to be exhaustive, but rather to be broad and to put into
perspective the subject matter treated here. We visit examples that reflect
some of the flavors of Artificial Life that are out there, while keeping
in mind that the selection is neither complete nor even representative.
Finally, in Section 1.4, we jump back in time and review the theoretical
foundations of Artificial Life, which lie in Automata Theory and the work
of Turing and von Neumann.

1.1 Whither a Theory of the Living State?

The essence of life has most likely been sought for as long as we have
been consciously thinking. Considering that our progress in understand-
ing nearly all aspects of the inanimate world around us has been so
spectacular, it might appear as an oversight that there is no consensus as
to what separates the living from the nonliving state. Clearly, as scientists
we are interested in a nonmetaphysical description of the essence of life
and to our astonishment, the present state of this description is still vague
and debated.

1.1 Whither a Theory of the Living State?

In the classical scientific fields, progress is achieved by moving from
a simple enumeration of observations to classification. For example, a
point of light in the dark night sky may first be classified as a star (as
opposed to other sources of light in the sky) and then later put in the
same class as the sun, having understood that the sun and the stars are
objects belonging to the same class, but which are at different distances.
Yet, creating a class does not necessarily ensure that we have a good
understanding of the characteristics of this class. Again as an example, in
general, we do not have any trouble distinguishing the living from the
nonliving, and thus to ascribe all things known to us to any of the two
classes. Our problem is to find a minimum number of characteristics that
all those systems classified as living have in common, and moreover to
have the confidence that this classification does not depend too much on
the particular choice of members of the class. In other words, we want
the class thus defined (by the minimum number of characteristics) to
be universal. Clearly, the category “all things twinkling in the night sky”
will not do, whereas our current astrophysical definition of star is general
enough that few objects exist that we cannot classify. In general, as we
shall see using an example from physics, this is only possible if we have
a certain understanding about the class, which allows predictions. Such
an understanding is often called a theory, or sometimes, if the realm of
application of that theory is clearly limited, a model.

Let us follow the development of the understanding of the concept
of mass through the history of physics. With the concept of mass, again,
it is not difficult to decide between massive or nonmassive; rather, it is
the choice of universal characteristics that is all-important. It was Galilei
and Newton who, when physics became an exact science, proposed that
mass was “that which causes inertia” rather than “that which is heavy,
thus gaining predictive power and making the class of all things that
are massive much more precise. In fact, such a bold step was never
taken in the quest to understand living systems, and it is important to
understand why. What characterizes the progress in understanding the
concept of mass is a steady removal of layers, with each new concept
more precise but still describing the entire class. Progress is achieved from
contemplation of experiments geared specifically at addressing theories
that arose from the previous set of experiments. For instance, consider
what once was considered to be a characteristic of mass, namely that it
could only be divided into its indivisible parts (the atoms), and that the

1 Flavors of Artificial Life

mass of the sum of the parts would equal the initial mass. This has been
disproved by taking apart massive objects. While we learned that mass
can also be converted to energy, we also learned that each subdivision of
a massive object was still massive. Moreover, it was commonly assumed
(rightfully in this case) that by subdividing the massive object, we progress
closer and closer to the most universal massive thing. Arriving at the
indivisible building block (the elementary particle) and measuring its
characteristics (and inferring why they are there rather than absent), we
gain an understanding of the concept of mass.

For physicists, the layers have yielded steadily in a progression from
the atom to the nucleus to the nucleon to quarks and leptons. For the
living system, step one already fails: we can take apart a living system,
but most of the time the parts themselves do not carry the property we
are interested in anymore, so an analytic approach is impossible. Thus,
there appears to be no elementary living thing: life seems to be a prop-
erty of a collection of components but not a property of the components
themselves. Also, putting back together the lifeless parts usually does not
reconstruct the initial system. The path that has proven so successful in
physics is barred.

Ideally then, we would like to have a glimpse at the system that
preceded the prokaryotic metabolism, because if we cannot have an ele-
mentary living object, maybe there is such a thing as the simplest living
system. We would like to see, therefore, whether there was an “RNA
world” (a putative period and environment preceding prokaryotic cells
dominated by RNA polynucleotides that catalyze their own replication)
and how it arose. Reconstructing this system would allow us to perform
experiments on one of the (ostensibly) simplest living systems. Further-
more, such a system may inspire a theory of what constitutes essential
ingredients of a living system. In addition, we may insist that such a the-
ory be universal, not in the sense that it describes the elementary living
thing, but in that it describes the simplest living thing without making
reference to the materials that constitute it, only to the principles. Thus,
such a theory ought not to be specific as far as the realization of the sim-
plest living system is concerned. For this reason alone it is worthwhile to
construct the most simple system with what we consider to be important
aspects of living systems, such as self-replication, information storage,
low entropy, and selection. This system will then be used to test predic-
tions of theories of the living state. Both theory and experiment can then,

1.1 Whither a Theory of the Living State?

The physiological definition centers on certain functions performed by.
organisms, such as breathing, moving, etc. Such a definition has been
overtaken by time by the discovery of organisms that do not partake in
such functions.

The metabolic definition centers on the exchange of materials between
the organism and its surroundings, a definition that also has proved itself
to be too narrow to encompass the diversity of life.

The biochemical approach defines living systems by their capability to
store hereditary information in nucleic acid molecules. Clearly, we rec-
ognize an important departure from the previous definitions in a focus
on information storage in a particular medium rather than a behavioral
characterization. Still, the focus on nucleic acids as a substrate may again
prove to be too constricting.

The genetic definition focuses on the process of evolution as the central
defining characteristic of living systems. Such a view does not specify
how the information is coded, but rather emphasizes the processes that
this information is subject to, such as mutation, replication, and selec-
tion. Such a definition appears to be more satisfying than the purely
biochemical one, as it does not prescribe what living systems have to be
made up of.

An even more general approach is the thermodynamic one, which at-
temnpts to define living systems in terms of their ability to maintain low
levels of entropy, or disorder, only.

BOX 1.1 Definitions of Life

in the time-honored tradition of the sciences, complement each other
through trial-and-error. Let us start by considering the common ways by
which scientists have attempted to characterize life. We shall then jux-
tapose them with a principle for living systems that has emerged from
considering experiments with artificial living system.

Through the course of time, a number of different ways developed
to define or characterize life. In general, this progression of definitions
does reflect a generalization of the concepts like those we witness in the
development of physics concepts. Unlike in physics, however, we are
clearly still far from a satisfactory state (see Box 1.1).

1 Flavors of Artificial Life

The second law of thermodynamics, which we shall study in Chap-
ter 4 because of its relevance to the Characterization of living systems,
promises that all matter will, as time progresses, reach a state of maxi-
mal disorder. Quite obviously, living systems appear to be resisting this
approach to chaos rather admirably by producing ordered forms in the
midst of disorder. Without a doubt this capability is crucial to living sys-
tems. How this aspect can be understood within the physics of entropy
and information shall be one of the subjects we will treat as we progress.
We will find in Chapter 5 that life has the capability to operate as a nat-
ural Maxwell demon, thereby sidestepping the second law and evolving
towards higher and higher complexity.

Maybe a definition of life is possible focusing on thermodynamics
only (see Box 1.1). In our search for a theory, however, it is not enough
that we find a characterization that encompasses all living systems, but
we would also like to use such a theory to make predictions about other
possible forms of life, and at the same time exclude all that is nonlife. To a
certain extent, this requires making the thermodynamic definition more
precise. In the light of the experiments with Artificial Life that we shall
encounter in this book, we might formulate a principle of living systems
such as:

Life is a property of an ensemble of units that share information
coded in a physical substrate and which, in the presence of noise,
manages to keep its entropy significantly lower than the maximal
entropy of the ensemble, on timescales exceeding the “natural”
timescale of decay of the (information-bearing) substrate by many
orders of magnitude.

Note first that this principle abandons the idea of life being a property
of any single object. Even though this may appear unnecessary (we be-
lieve that each one of us can be considered alive), this is significant from
a statistical point of view. Such a principle insists that life is an emergent,
rather than atomistic, phenomenon. Similarly, this principle invokes the
natural rate of approach to disorder of the substrate in question, and at
the same time insists that there can be no life without this substrate
representing information. The natural rate of approach to disorder (the
“relaxation time” that we encounter in Chapter 4) for biomolecules, for
example, is of the order of hours to days (but sometimes much longer)
in a hot and noisy environment, yet the information contained in tRNA

1 Flavors of Artificial Life

of life that we may find on distant planets, asteroids, or in interstellar
material violates or corroborates any of the principles we may formulate.

The use of a principle such as the one above is primarily to serve as
a target for thought and experiment: Can it be demolished easily or does
it withstand old and new evidence? To a certain extent, the Artificial Life
investigations presented in the following chapters seem to uphold such a
view of life, but there is little doubt that what we shall learn in the future
will replace such a principle by a more educated one, just as the scientific
process dictates.

It is quite possible that a theory of the living state that emerged from
experiments involving “foreign” living systems will never be quite ac-
ceptable, even in the event that it predicts correctly the behavior of the
simplest carbon-based living systems. It might, however, give rise to a
physical rather than metaphysical definition of life that clearly encom-
passes more than just life on earth. Still, such a theory may fall short of
explaining the exact origin of life on earth. The science of biology would
have to share such a shortcoming with physics: we know everything about
mass, yet its origin is still unclear.

1.2 Emulation and Simulation

This section presents a brief overview of the main branches of Artificial
Life that we do not cover here. They usually involve the emulation or
simulation of living systems, in whole or by part, without attempting to
actually construct life. It is important to keep in mind the scope of the
entire effort in the field to obtain a feeling on where, in the scheme of
things, the computational approach taken in this book is situated. For a
more thorough introduction to the diverse areas of inquiry associated with
Artificial Life, see Langton (1995), which contains many of the papers that
are referenced in this section.

Artificial Life is often described as an attempt to understand high-
level behavior from low-level rules. As such, it is a strictly reductionist
science: the low-level rules are the laws of physics. However, reduction
may stop at a level higher than physical laws, and more importantly,
Artificial Life is not strictly about artificial living systems. Rather, the
simulation (or emulation) of a living system or parts of a living system

1.2 Emulation and Simulation

with the intent to understand its behavior forms a large part of Artificial
Life. On the other end of the spectrum, the precise details of a member of
a population may be neglected in order to study the emergent properties
of living populations, usually in the simulation of many agents.

Simulation of Units

In the emulation of single living agents, the functioning of (or processes
affecting) just one or a few units, or just a part of one, is the focus
of interest. Such a simulation may be performed by means of computer
modeling or engineering. In each case, the analytical or deconstructionist
path is or was unsuccessful, and insight into the function of the unit is
gained by reconstruction in an artificial medium. A well-known example
is Sims's (1994) artificial evolution of swimming motion and morphology
in simple simulated animals constructed out of blocks, and the evolution
of morphology and strategies for competition.

The object of Sims’s study is not the understanding of an emergent
phenomenon, but rather the exploration of the consequences of putting
together a number of simple but important concepts: simple algorithms
that control morphology (as a function of the simulated environment and
the required task), evolvable neural networks and sensors, and selection
of the fittest. Most of all, the object is not to study a fixed fitness func-
tion and let a population adapt to it (the traditional Genetic Algorithm
approach) , but rather to let the population be part of the environment,
such that the members of the population are coevolving, and such that
the physical structure of a creature can adapt to its control system and
vice versa, as well as to each other. Selection of the fittest in Sims’ work
is implemented by competition, i.e., candidates are pitted against each
other. In a particular example, the creatures attempt to gain control of
a single cube that is placed in the center of the (simulated) world. The
simulator also controls the interaction of the creatures with each other
and the physics of the world they are in, whereas their morphology and
their control system are evolved. The morphology and the “brain” of a
creature are determined from a genotype, shown in Fig. 1.2. There, the
bold lines characterize the morphology (a central block connected to two
ancillary blocks), while the inner graph describes its neural circuitry. The
resulting phenotype (the creature’s actual morphology and brain) is shown

10

1 Flavors of Artificial Life

IOV
(Po)
g@

FIGURE 1.2 Example of evolved “nested-graph” genotype. The outer graph
in bold describes a creature's morphology, while the inner graph describes its
neural circuitry (after Sims, 1994).

in Fig. 1.3. The evolution of virtual creatures starts by creating an initial
population of candidates by randomly generating genotypes and check-
ing initially for general viability (like whether their block-arrangements
are physically sound and not interpenetrating, for example). Then the
remaining creatures are paired off for competition, and their fitness is
determined by their success at claiming control over the cube.

The competition is biased in that creatures that have a height ad-
vantage must start further away from the block so as to discourage the
inelegant solution of just falling over the block. For each generation, the
most successful creatures are replicated and take the spot of those that
were removed due to low or zero fitness. Then offspring are generated
by crossing-over the directed graphs (such as Fig. 1.2) that define their
morphology and brain, and mutating them in a probabilistic manner.
Fig. 1.4 shows examples of simple evolved creatures in a typical contest
situation. The difference in approaches (i.e., morphologies) is astound-
ing, and mirrors the complexity of the fitness landscape that is created
by letting the population itself shape (to a large extent) the landscape.
The results are impressive from a scientific and a visual point of view,
and none of the insights obtained could have been gained with standard
approaches. Indeed, the study of the evolution of morphology is, for the
most part, confined to the study of paleontological records.

An equally impressive example is the emulation of fish in a (simu-
lated) hydrodynamic setting [Terzopoulos et al., 1994]. In this example,
the object is not to evolve arbitrary creatures and to study which factors
are responsible for adaptability, but rather to model and understand exist-
ing fish, and understand their behavior as individuals as well as groups. As
an alternative to performing experiments with real fish, the animals here
are simulated holistically as autonomous agents situated in a simulated

1.2 Emulation and Simulation

(a)

(b) Sensors Neurons Effectors
Pl
Co * EO
PO s+7? El
— —
Qo \

A0

PO s+? El

5,

FIGURE 1.3 (a) The phenotype morphology generated from the evolved
genotype in Fig. 1.2. (b) The phenotype “brain” generated from the evolved
genotype. The effector outputs of this control system cause the morphology
shown in (a) to roll forward in tumbling motions (from Sims, 1994).

physical world. The agent has a three-dimensional body with internal
muscle actuators and functional fins; sensors, including eyes that can
image the environment; and a brain with motor, perception, behavior,
and learning centers. In order to match the visual appearance of the fish,
realistic textures of fish obtained from photographs are mapped onto the

11

12

1 Flavors of Artificial Life

k m

FIGURE 1.4 Evolved competing creatures (from Sims, 1994, with permis-
sion).

geometric fish model. The most important aspects of fish control and in-
formation flow are then programmmed into these creatures (see Fig. 1.5),
which subsequently adapt to the environment, finding locomotive and
obstacle-avoidance strategies, as well as displaying schooling behavior to
escape (emulated) predators.

1.2 Emulation and Simulation

the analysis of the robot's emergent behavior has yielded important in-
sights on the algorithms Nature uses, and how it is that a cricket finds its
mate.

Simulation of Populations

Emergent, or collective, properties of a system are often not apparent in
the microscopic rules governing the interaction between the elements of
a population or ensemble. What distinguishes living systems from collec-
tions of objects of inanimate matter from a purely computational point of
view is that ensembles of living agents are for the most part not amenable
to a statistical description in terms of macroscopic observables. Even
though the microscopic rules are usually simple, they are far more com-
plex than, for example, those governing the collision of molecules in an
ideal gas (for which a statistical description is eminently successful). The
only recourse, then, is the simulation in parallel of many of the agents,
to recognize and analyze the emergent behavior of the population or en-
semble. This is not always a straightforward task. The self-organization
present in many living systems dictates that most elements of a simu-
lation affect each other in such a manner that they cannot be updated
independently (see, e.g., Rasmussen and Barrett, 1995, for a theoretical
analysis of this problem). Furthermore, the analysis of the simulation can
be complicated by the very fact that the emergent structures can affect
the units they are made of in nonlinear fashions. The problems faced here
are somewhat comparable to those involved in simulating global weather
phenomena: while the main characteristics of the dynamics can probably
be described by only a few degrees of freedom, it is often unclear what
these are. In the absence of any theory predicting those, they have to be
obtained by simulation.

Some examples here are the study of trail-following in foraging ant
populations {Goss et al., 1993}, and the emergence of swarm intelligence
in the building of large structures (such as wasp nests) by members of
a population, each acting on local rules only [Theraulaz and Bonabeau,
1995]. The latter provides an intriguing insight into how Nature may ac-
complish the construction of complicated structures without “knowing”
what it is building. In “distributed building,” local agents are moving ran-
domly on a three-dimensional cube and, following local rules, can build

15

18

1 Flavors of Artificial Life

the computer. This section describes two of the *wet" approaches and
leaves the computer approach to later sections, as it is our main concern.

Rapid progress in microbiology has brought with it the first serious at-
tempts at recreating a protean living system. Mostly, the effort is centered
on recreating the mythical RNA-world, the putative precursor to cellular
life, with genetic information stored in single-stranded RNA strings that
are the catalysts of their own reproduction (for a review, see, e.g., Hager
et al., 1996). Such a molecule seems to have almost magical capabilities.
On the one hand, it needs to fold into an RNA polymerase that uses
RNA as a template and thus copies other RNA molecules; whereas on the
other hand, it needs to unfold to act as a template for other replicase
molecules. Such molecules are said to “catalyze the template-directed
polymerization of RNA’; in other words, they self-replicate. However,
no such string or family of strings with the capability of autocatalysis is
known. Still, the vast repertoire of possible sequences and their structural
complexity effects the hope that such an ancestral string can be found or
constructed. Such an evolutionary strategy was followed by Szostak and
collaborators [Bartel and Szostak, 1993; Ekland et al., 1995]. This method
was considerably improved by Joyce and collaborators [Wright and Joyce,
1997] by allowing the continuous evolution of macromolecules in vitro.
Because of the importance of this approach and its relevance when com-
paring the chemistry constructed by these groups to the computational
pseudo-chemistry that is the object of most of the following chapters, we
will explore in vitro evolution in more detail.

The catalytic activity of the ribozymes (the general term for RNA
molecules with catalytic activity) evolved by Bartel and Szostak involves
the self-ligation of a substrate oligonucleotide to the RNA ligase. In less
technical terms, the evolved RNA molecule is able to bind itself to a target
molecule at a rate far exceeding unselected ribozymes, and even naturally
occurring ones. The target molecule and the self-ligation are chosen to
be similar to the polymerization reaction of polymerase proteins, in the
hope that such experiments will lead to self-ligating and self-polymerizing
molecules. The target molecule has another function, however. After it is
successfuly attached to the RNA molecule by the self-ligation process, it
serves as a tag to identify successful molecules. They can, by virtue of this
identifying tag, be selected from the pool of all molecules and amplified
by the polymerase chain reaction (PCR) after reverse transcription (see
below). The resulting purified pool can then be subjected to mutations to

1.3 Carbon-Based Artificial Life

Substrate oligo

Random sequence

FIGURE 1.9 Ligation of the target substrate to the RNA molecule containing
220 random base pairs. The RNA molecule has a constant (nonrandom) piece
at its 5’ end, which is recognized by the substrate.

prepare a generation of fitter molecules to go through another round of
selection.

The initial pool of molecules is prepared by attaching a random se-
quence of length 220 base pairs to a template region that will later bind
to the target molecule. Thus, the RNA molecules are only random in the
region that is supposed to be catalytically active, not in the 5’ end that is
supposed to bind to the 3’ end of the target molecule (see Fig. 1.9). The
reaction that takes place in the catalysis is a 3'-5' phospho-diester link-
age that subsequently releases the triphosphate (ppp) at the 5 end. The
fact that catalytically active sequences were found starting with a pool of
about 10'® random sequences is quite astonishing considering that this
pool represents a negligible fraction of the 4??° possible sequences, and
the probability of catalytic motifs (patterns of nucleic acids that the RNA
strings can bind to) was estimated to be small, ~ 4 x 10~'°. This suggests
that a great many RNA structures can catalyze the self-ligation process,

19

20

1 Flavors of Artificial Life

.

and that these structures are evenly distributed in sequence space. Cur-
rently, several groups are working on this subject, and are attempting
to breed ribozymes that accomplish not only self-binding, but also the
cutting and splicing of other ribozymes, in the quest to find a ribozyme
that catalyzes its own replication. The existence of such a molecule, if it is
discovered, has importance far beyond the study of the origin of life and
the physical dynamics of living systems. Such a ribozyme could be cru-
cial in drug-design, because a self-replicator could be used in the adaptive
breeding of drugs much more efficiently than the current method where
replication and selection has to be carried out painfully by hand. A major
step in this direction is due to Wright and Joyce [Wright and Joyce, 1997].
Building on the work of Bartel and Szostak, Joyce'’s goal was to create a
chemistry in which evolution would proceed without the intervention of
the experimenter who has to select, reverse-transcribe, and amplify the
sequences that are successful in solving the task at hand. Let us take a
look at this remarkable chemistry.

Joyce started with one of the very active RNA ligases that Bartel and
Szostak had bred, but replaced the 5 end of that ligase with a sequence
that can bind to the promoter element of a bacteriophage RNA poly-
merase: the substrate. In other words, if the RNA ligase manages to bind
to this substrate, it carries with it a tag that can be recognized by an RNA
polymerase, which could then proceed to copy the RNA. This is of course
intended to replace the manual PCR amplification of the selected strings.
RNAs that lack the promoter element will not be replicated, while RNAs
that have it will, in a solution that contains the replicase. Before this can
happen, however, another important step must take place. Indeed, RNA
polymerase acts on double-stranded DNA rather than RNA, so the RNA
string that has the attached promoter element must first be converted to
DNA by reverse transcription.

Reverse transcription is the operation that translates RNA back into
DNA, a procedure employed by many viruses, especially the so-called
retroviruses. Reverse transcription is automatic if the RNA molecules are
in solution with reverse transcriptase (a molecule that can be extracted
from viruses) but only if the RNA is recognized by the reverse transcrip-
tase, so that it can bind to it. Remember that the goal is to create a
chemistry where all the steps that were carried out by the experimenter
now happen automatically, without interference. For this to happen, the
RNA ligase has to bind to a DNA primer, which hybridizes to the other

1.3 Carbon-Based Artificial Life

(3") end of the RNA. Hybridization is any reaction where DNA and RNA
bind together. Note that this happens also in the ligation taking place at
the 5 end, as the promoter element (the substrate) is DNA. After the
DNA primer is attached to the RNA, the revérse transcriptase produces
a double-stranded DNA molecule that carries the (now double-stranded)
promoter element. This can now be recognized by the RNA replicase,
which proceeds to make on the average of ten RNA copies from the DNA.
Those RNA copies, however, are lacking the promoter element (the sub-
strate), which therefore is returned to the population and can partake,
along with the newly formed RNAs, in a further round of evolution.

To initiate this breathtaking dance, the RNAs have to have a certain
amount of replicative ability at the outset. The changes made in the RNA
ligases by Wright and Joyce (in order for it to catalyze the ligation of
the promoter), however, reduced the catalytic capabilities tremendously,
so a number of rounds of manual stepwise evolution were taken before
the continuous evolution was attempted. After those preliminary rounds,
the new RNA ligases were added into a reaction mixture that contained
substrate, reverse transcriptase from a leukemia virus, DNA primer, and
RNA polymerase from the bacteriophage T7. After 60 minutes, a small
portion of the mixture was transferred to a fresh reaction vessel, and
thus diluted. Indeed, during the 60 minutes the population of RNAs had
doubled four times! After transferring the reaction mixture 100 times
(this is necessary because the production of RNA uses up materials and
increases in concentration exponentially), the overall amplification of the
RNA was 3 x 10?81 At the end of the 100 transfers, the doubling time of
the RNAs had decreased to 2 minutes by the production (from random
mutations) of ever better catalysts. Meanwhile, the RNA were breeding
“true” (making exact copies) without selection, reverse transcription, and
PCR amplification by the experimenter. In a sense, Wright and Joyce
created the first artificial cultures of ribozymes in vitro. As mentioned
earlier, the kind of ligase reaction that is catalyzed by the RNA is similar
to a polymerization reaction. The hope is therefore that in the future, the
ligation could occur between the RNA ligases and NTP (mononucleotide
triphosphate) as a substrate, which would open up the possibility that
the RNA ligase itself, rather than foreign T7 polymerase, could act as
a RNA polymerase. Within a decade, this activity may well lead to the
resuscitation of an RNA replicase, a molecule that presumably has been
extinct for over three billion years.

21

22

1 TFlavors of Artificial Life

There is some doubt, however, that such an RNA world can exist in
the aqueous environment of an early earth, as water is known to dis-
solve (lyse) polynucleotides. The belief that self-replicating RNA may
have been encased in simple cell membranes made of lipid bilayers has
spawned research in the possibility of simple self-replicating compounds,
the “core-and-shell” self-reproduction approach [Luisi et al., 1994]. The
idea is to join two systems that can be made to replicate. On the one hand,
certain bilayered oleate bubbles (i.e., bubbles made out of the same mate-
rial that most cell membranes are made out of) are known to multiply in
the right conditions (i.e., if the right chemicals are present), even though
the exact mechanism for their replication is not known. On the other
hand, as we have seen, it is possible to replicate RNA polynucleotides.
Here, this happens in a solution of Qp replicase (a bacterial enzyme) but
without the selection imposed in the in vitro evolution experiments (the
Qg replicase makes copies indiscriminately). If the bilayered bubbles are
filled with RNA and the replicase, the core-and-shell systems start to grow
in numbers for several generations, with each bubble having roughly the
same content of RNA. Yet, such constructions are still far away from any
satisfactory protean cell, as the self-reproduction process in those mix-
tures can only continue as long as excess substrate is present. Also, the
mechanisms for core-and-shell reproduction are chemically independent,
contrary to what we expect in realistic cells.

1.4 Turing and von Neumann Automata

The foundations of any attempt to create Artificial Life inside of a com-
puter lie in Automata Theory as described by Turing [Turing, 1936] and
von Neumann [von Neumann, 1951]. Before we describe von Neumann's
theory of self-reproducing automata, we need to detail Turing's construc-
tion of a universal automaton, which inspired von Neumann to think
about self-reproduction.

A Turing machine is an abstract automaton that can be in one of a
finite number of states (1,...,n) and capable (in principle) of reading
and writing on a tape of instructions (customarily ones and zeros). Each
Turing machine is characterized by the rules by which it changes its
state, as a function of both the bit currently being read on an arbitrarily

1.4 Turing and von Neumann Automata

long tape, as well as its own state. The actions (or states) of the Turing
machine consist of reading information, moving the read-write head, and
writing information onto the tape. Such an abstract, logical automaton
can be specified by determining the mapping between a finite number of
numbers. Suppose, for example, that we specify the initial state (one out
of n) of the automaton by i, and the final state by j. Let us also denote the
digit that is underneath the read-write head by ¢, and the number of digits
that the tape will move (or equivalently that the head will move) by p.
For the simplest automaton, p can only take on the valuesp = -1, 0, +1,
i.e., either the head is stationary, or it moves one digit to the left or right.
Finally, let f denote the digit that the Turing machine writes, i.e., f = 0
or 1. Then, the quintuplet

Up.f.ie (1.1

determines a rule for the Turing automaton, and a specification of all the
rules (i.e., j, p, f as a function of i, €) determines the automaton uniquely.
The importance of Turing’s construction lies in the fact that with this
specification of automata, he was able to prove that not only could such
a machine compute any number, but also that there were only count-
ably many such machines, i.e., that they can be listed. This being so,
Turing concluded that the description of any Turing machine could be
provided to another machine (the universal machine) as information on
the tape, such that the universal machine can emulate any other ma-
chine. Thus, any computing process can be mapped to the operation of
a universal Turing machine, just described above. Apart from its ram-
ifications in the theory of logic systems and the decidability problem
(see Box 1.2), the proof that any possible computer could be simulated
by this very simple universal Turing machine gave rise to the sugges-
tion (also known as the Church-Turing thesis) that all sufficiently complex
computers (or computational models) are in essence equivalent—in par-
ticular that they are capable of calculating any “partial recursive,” (or
in less mathematical terms: “reasonable”) function. One of the first ap-
plications of Turing's work was the construction of a formal neuron
that could be shown to have the capacity of universal computation and
would thus constitute, at least in principle, an adequate building block of
a brain.

John von Neumann recognized that the idea of a universal computer
could be extended by increasing the number of operations that a Turing

23

24

1 Flavors of Artificial Life

Turing constructed his universal automaton mainly to investigate a fa-
mous problem in mathematics, the Entscheidungsproblem, or decidability
problem. The main question there is 'whether a machine could be con-
structed that automatically proves all mathematical theorems. In order to
address this problem, Turing mapped the Entscheidungsproblem to a more
fundamental problem: the halting problem. In essence, he asked whether
one could build a machine that would predict when another machine is
going to halt, which in the language of automata theory means “finishes
a calculation and comes up with an answer” He showed that this was in
principle impossible, using a version of an argument due to the mathe-
matician Kurt Godel. The latter had shown that, within any mathematical
(or logical) framework that is complex enough (which, for our purposes
we can translate with “interesting enough”), there are statements that
are patently true, but which cannot be proven within the confines of the
mathematical or logical framework. Such a theorem can be arrived at
by constructing sentences that are semantically self-referential, such as
“This statement cannot be proven within the logical framework of the
Principia Mathematica,” and subsequently translating this statement into
a mathematical formula, which one then attempts to prove. In order to
show that no automaton could exist that predicts whether an automaton
will halt, Turing considered programming an automaton to halt if and
only if it would foresee (predict) that it will rnot halt. As this situation
leads to a paradox, the initial assumption must be wrong: automata that
can predict halting cannot always exist. In order for such a proof to work,
you have to be able to specify one automaton to another, which is what
Turing figured out how to do.

BOX 1.2 The Halting Problem

machine can do. The idea of a computer simulating a computer (by being
fed the information necessary to characterize that computer, i.e., the set
of rules) led von Neumann to a formulation of the requirements for
an automaton to construct another automaton. In analogy with Turing, he
drew up what he considered to be a complete list of elementary parts to be
used in building automata (a catalog of machine parts). The construction
automaton is imagined to float in an infinite supply of these parts and,
when furnished with the description of a particular automaton, proceeds
to construct it. This is the universal constructive automaton, A. Let I then

1.4 Turing and von Neumann Automata

stand for the description of a particular automaton. (This is the analogue
of the information tape in Turing machines.j As a special case, A could
be given the description of itself, and therefore self-replicate. Further,
consider automaton B, which receives instructions I and proceeds to
make a copy of them (i.e., B is essentially a Xerox machine). Finally,
combine automata A and B, and imagine a control mechanism C with the
following function: When A is furnished with instructions I, C instructs
A to construct the automaton described by I. Then C causes B to make a
copy of I and insert it into the newly constructed automaton. Finally, the
constructed automaton with instructions is separated from A and B. For
the sake of being definite, let

D=(A,BCO).

Clearly, D can only function if supplied with instructions I, to be inserted
into A of D. Now consider the instructions I, which describe D rather
than just A or B. Then the aggregate

E = (D, Ip)

is reproductive, and by construction, a universal self-reproducing auto-
maton.

It is important to emphasize here the qualitative difference made be-
tween an automaton and the description of an automaton. According to
von Neumann, these are objects in different hierarchical categories. One
of the reasons for this distinction lies in the puzzling observation (as far as
self-replicating automata are concerned) that automata have (as deduced
from observing natural automata) the ability to construct automata with
higher complexity, or complication, than their own. There was no evi-
dence for this in construction automata of the time (mainly machines
that build tools). Still, von Neumann argued that this could easily be
understood as long as constructive automata are provided with instruc-
tions that are more complex than themselves. What is left open is where
this extra information comes from. Von Neumann argued that there was
a “level of complication” above which complication could increase (in
later generations)—below which, however, self-reproduction was degen-
erative. This was very obviously inspired by the famous incompleteness
theorem of Godel, which made reference instead to a logical system that
was complex enough (see also Box 1.2).

25

26

1 Flavors of Artificial Life

Von Neumann's idea clearly has to be amended at this point. In
hindsight (knowing the structure of the genetic code), it is of course an in-
crease in information (more coniplicated instructions) that is responsible
for an increase in complexity of the organism. However, the information
is written into Ip (which von Neumann identified with the genome in
natural automata) by random mutations, and does not have to be present
in I, from the beginning. In this sense, the complete reproductive sys-
tem must include the environment to which the system is adapting. We
shall return to this point when we discuss such concepts as complex-
ity and measurement from a computational point of view in Chapter 5.
In the following section we retrace the first steps at implementing von
Neumann’s logical construction in a computational medium.

1.5 Cellular Automata

Cellular Automata (CA) were invented by von Neumann (according to
common lore, upon a suggestion by the famous mathematician Stanistaw
Ulam) in order to construct a realization of the universal self-reproductive
automaton while an engineering solution was infeasible. The idea fol-
lowed closely the Turing construction of a universal machine. Each organ
of the self-replicator was to be constructed as a pattern (in two dimen-
sions) of cells in different states, while the state of each cell X(t + 1) at
time-step t + 1 is determined by the state of this cell’s neighboring cells at
the previous time t, where a neighborhood is defined as the four adjacent
cells in the cardinal directions and the cell itself (see Fig. 1.10). In other

N
\\ E
S

FIGURE 1.10 von Neumann neighborhood in his 2D cellular automaton.
Each cell could take on 29 states, and the state of the central cell C at time t+ 1
depends on the state of the surrounding cells at time ¢ via update rule f.

1.5 Cellular Automata

words,
C(t + 1) = fIN(), E(t), S(t), W(1), C(1)], (1.2)

where C(t) denotes the state of the cehtral cell at time ¢ and so forth.
The number of rules of the type (1.2) to implement von Neumann's self-
reproducing automaton was enormous. Because von Neumann wanted
his self-replicator to be universal, he designed it along the principles of
the stored-program computers that he had helped design, which meant
that the replicator had many different parts that played the role of
pulsers, clocks, encoders, decoders, as well as pipelines that channeled
the description of the automaton to the relevant organs. The complex-
ity of this machinery precluded it from ever becoming functional, and
von Neumann never got to finish the construction. Recently, attempts
at reviving and completing the original design appear to have been
successful [Pesavento, 1995], a feat that now carries only historical
significance.

A simplified version of a cellular von Neumann automaton was de-
signed by Codd in 1968 [Codd, 1968), involving only eight states per cell,
but still insisting on construction universality, i.e., the automaton was sup-
posed to construct any other automaton. Because of this requirement
Codd’s machine was still very complex, and as a consequence was never
built. Work in this direction effectively stopped until 1984, when Chris
Langton revived the ideas and put the field on a new level [Langton,
1984; Langton, 1986]. Essentially, Langton realized that in order to study
aspects of living systems (such as self-reproduction) in a computational
medium, one need not insist on providing the sufficient ingredients for
self-replication, but only the necessary ones. An important element in this
discussion is that of computational universality (rather than construction
universality) of cellular automata. Thus, before describing Langton’s self-
replicating automata and the idea of virtual state machines (VSMs), we
need to introduce CAs more formally and discuss their classification in
terms of complexity classes.

Formal Definition of CAs

A cellular automaton is a lattice of sites, each of which can take on k
values. Each site of the automaton is updated at discrete time-steps by a

27

28

1 Flavors of Artificial Life

finite state automaton residing at each site, and assigned a value depending
on the value of the sites around it. The neighborhood of the CA is crucial.
In one dimension, each site has two nearest neighbors. In this case, the
value of site i at time t + 1, a*?, is determined according to

at+) = ¢(a(l) a® a(r)) (1.3)

i [l Wit Bt & Rl :

where ¢ is a function of three k-valued variables. The function ¢ is called
the CA rule. The idea of a neighborhood in 1D (one-dimensional) CAs
can be extended to include the next two, or more, nearest neighbors. This
defines the radius r of the automaton. Naturally, automata where only
the nearest neighbors determine the state of the site at the next time-step
are called r = 1 rules, whereas rules where the two leftmost and the two
rightmost sites (in addition to the value of the site itself) are used to de-
termine the next state are called r = 2 rules, and so forth. Finally, there
is a special state for each site called the quiescent state (usually denoted
as state 0). As we shall see later on, rules can be classified according to
how many of the rules return to this quiescent state [Langton, 1992]. Note
that the number of different rule tables for a CA can be quite large. For
example, for a CA with r = 2 (five neighbors if you count the site itself)
and k = 8 states, there are 32,768 possible neighborhood states. Each of
those can go into eight different states; thus the total number of differ-
ent transition functions is 832798 Usually, certain restrictions are applied
to the possible rule-tables, such as requiring that all neighborhoods con-
sisting entirely out of the quiescent state should return to the quiescent
state. Another restriction imposes spatial isotropy, which requires that all
planar rotations of a neighborhood should map to the same state. In one
dimension this means that the rules must be symmetric, i.e., neighbor-
hoods such as (1,0,0) and (0,0,1) must map to the same state. Rule tables
that satisfy these two conditions are termed legal [Wolfram, 1983]. In two
dimensions, the definition of a neighborhood depends also on the topol-
ogy of the grid. For a regular grid, a neighborhood might consist of the
north, south, east, and west squares (“von Neumann"” neighborhood), or it
might contain the diagonal squares as well (a nine-neighbor rule, “Moore”
neighborhood). More sophisticated geometries can be designed, such as
hexagonal grids (six neighbors). In the following, we shall attempt to clas-
sify the behavior of CAs (according to Wolfram, 1984) from a dynamical
systems perspective.

1.5 Cellular Automata

111 110 101 100 011 010 001 000

Tt

01011010 = 0x128 + 1x64 + 0x32 + 1x16 + 1x8 +0x4 + 1x2 + 0x1 =90

0

FIGURE 1.11 Specifying the update rule for a 1D CA with radius r = 1 and
two states. Shown here is rule 90.

Wolfram first investigated 1D CAs with k = 2 and r = 1, whose rule
tables can be specified by the decimal equivalent of the binary number
that results from concatenating the bits that result from the update of all
possible neighborhoods (see Fig. 1.11). In the simplest case (k = 2,r = 1),
there are eight different configurations for the neighboring sites, and the
rules can be distinguished by specifying the value of a bit at the next
update as a function of the different neighborhoods before the update.
(Fig. 1.11 shows rule 90 as an example).

Of the 256 possible rule tables, only 32 turn out to be legal. Several
other classifications of rule tables have been introduced. For example,
certain rules are such that the value of a site at the next time-step only
depends on the sum of the values in the neighborhood rather than the
values of each site itself. Such rules are termed totalistic, i.e., they can be
specified by functions of the form [cf. Eq.(1.3)]

a* = (@) +a® +a?)) . (1.4)

You can easily convince yourself that of the 32 legal k = 2, r = 1 rules,
only 8 are totalistic. Other rules depend only on the values of the sites
to the left and right of the center site. Such rules are termed peripheral.
(Rule 90 is an example of such a rule). Table 1.1 lists the 32 legal k = 2,
r = 1 rules, and their classification in terms of totalistic or peripheral,
and the Wolfram classes introduced below. Note that illegal rules are not
necessarily uninteresting. A special k = 2, r = 1 rule is the well-studied
Rule 110, which is nonsymmetric. A typical trace of this rule, started with
a random initial condition (with about half zeros and half ones), is shown
in Fig. 1.12.

Time in this case runs downward, and the asymmetry of the rule is
clearly visible. The rules for 1D totalistic CAs with two neighbors (r = 2

29

1.5 Cellular Automata

=5 X=4 X=3 X=2 X=1 X=0

0 1 0 1 0 0 = 20
=1 : 01000 — 0
=2 : 10001 — 1
=3 01101 —> 0
=4 @ 11101 — 1
=5 11111 —= 0

FIGURE 1.13 Specifying the update rule for a totalistic 1D CA with radius
r = 2 and k = 2. Shown here is code 20, and some examples of transitions
implied by the code.

Wolfram divided the rules into four distinct classes according to their
long-time behavior. As k = 2, r = 1 CAs are too simple to show all possible
behaviors, we concentrate instead on k = 2, r = 2 totalistic rules, of which
there are exactly 32 [Wolfram, 1984]. The first class (Wolfram class I),
displaying limit point behavior, is the simplest, as it evolves towards a
homogeneous state (either all zeros or all ones) from almost all initial
conditions in finite time (e.g., the code 60 rule shown in Fig. 1.14).

The second class (Wolfram class II), with limit cycle behavior, gener-
ates persistent structures in the long-time limit, i.e., we usually observe
periodic behavior, or patterns shifting uniformly to the left or right (try
code 56, shown in Fig. 1.15). Note that legal rules can show only trivial
periodic behavior (cycle length 0 as in Fig. 1.15), as uniformly shifting
patterns require a spatial inhomogeneity in the rule.

Class IIT CA rules almost always lead to aperiodic, chaotic states (Rule
code 10, Fig. 1.16 is of that sort). In this class, the structures emerging
may be ordered, but they show no obvious periodicity and no uniform

AW e e ccigyt - mAges tmm e s st iis Snggr g

FIGURE 1.14 Temporal behavior of the k = 2, r = 2 code 60 totalistic rule
(class I).

31

32

1 Flavors of Artificial Life

<

FIGURE 1.15 ‘Temporal behavior of the k = 2, r = 2 code 56 totalistic rule of
class IT.

FIGURE 1.16 Temporal history of the k = 2, r = 2 code 10 totalistic rule,
with class lII behavior.

1.5 Cellular Automata

shifting of patterns. Naturally, for any finite CA (i.e., with a finite number
of sites), any pattern must necessarily recur at some time, as for a CA
with N sites there can be only k" different patterns. The classification
of the rules is thus meant to apply to the N — oo limit. Note also that
for some rules the behavior depends strongly on the initial pattern with
which the CA is started. In that case the classification applies to average
behavior over many different initial conditions.

Arguably the most important of the CA rules are those that fit into
neither of these categories: the class IV automata. The temporal behavior
of these CA is very complex, showing complicated patterns that seem
to self-organize, and perform complicated operations (see the code 20
rule in Fig. 1.17). It has been argued that such automata are capable of
universal computation, i.e., that the patterns are rich enough to serve as
a universal Turing machine. It is of course for this reason that this class
of automata is deemed to be so interesting.

For example, Langton (1992) has suggested that class IV automata
maximize the information processing capacity for such automata, i.e.,
they allow for the maximal transmission of information from input to

FIGURE 1.17 Temporal history of the k = 2,7 = 2 code 20 totalistic rule,
displaying class IV behavior.

34

1 Flavors of Artificial Life

output. In a certain sense, he suggests that such automata are “perched at
the edge of chaos” The “Game of Life” CA invented by the mathematician
John Conway [Berlekamp et al., 1982] also seems to be in this complexity
class, even though we will hardly be so overly impressed by its dynamics
as to infer that the game has direct relevance to natural living systems.
Still, we will be discovering an intriguing analogy in living systems to
these dynamical systems perched at the edge of chaos, when we study
aspects of critical self-organization in Chapter 6.

1.6 Overview

The field of Artificial Life covers a wide range of disciplines, from engi-
neering over biochemistry to physics, biology, and computer science. At
the root of the endeavor lies the desire to understand the general prin-
ciples that govern the living state, and to construct life in an artificial
medium so that its properties can be compared to the terrestrial life with
which we are familiar, but also the conviction that modern technology
can help us learn more about the living world around us by simulation
and emulation. Artificial Life may yield experimental data that can be
used to falsify theories about what constitutes the most general living
state, just as evidence of extraterrestrial life in our solar system may one
day do.

In order to properly place the approach followed in this book among
others, highlights from different disciplines are introduced to convey
the different flavors of Artificial Life that have emerged. The concepts
of emulation and simulation are discussed with examples from robotic
engineering, physics, and biology. The biochemistry of in vitro evolution
and core-and-shell self-reproduction are mentioned as precursors to a
carbon-based Artificial Life. Finally, the roots of the field are found in
Turing's Automata Theory and the logical, self-reproducing automata of
von Neumann. The latter's theories and ideas can be said to be the true
foundations of the field. The cellular automata that have simplified our
thinking and our approach to computation are introduced formally, and
complexity classes are discussed as a means to classify the computational
chemistry that is created.

Problems

Problems

1.1

1.2

The CA that is Conway’s Game of Life is a two-state, nine-neighbor (Moore

neighborhood) CA with three very simple rules that lead to an amazing

amount of complex behavior, given the proper starting conditions. The

rules are,

e Aliving cell (state “1") with 2 or 3 neighbors remains alive.

e A dead cell (state “0") with exactly 3 neighbors is born.

o All other cells die (from loneliness or overcrowding), or else remain
dead.

Here are a few sample updates:

L

What is the smallest possible configuration (i.e., using the fewest
number of living cells) that will completely die out in a single update? To
make this question nontrivial, at least one cell must die from overcrowd-
ing (from having four or more neighbors). Here is an example that dies
in two updates:

it
"

Classify the 32 legal totalistic rules for 1D CA with two states and a neigh-
borhood of five cells (k = 2, r = 2) in terms of the Wolfram classes. A CA
simulator can be found at http://alife.santafe.edu/alife/topics/
ca/caweb/.

35

CHAPTER TWO

Artificial Chemistry and
Self-Replicating Code

Das Sein ist ewig; denn Gesetze
Bewahren die lebendgen Schiitze,
Aus welchem sich das All geschmuickt.'
J.W. von Goethe

2.1 Virtual Machines and
Self-Reproducing CA

As mentioned before we entered the more formal discussion of CA, the
appeal of CA as a substrate for Artificial Life lies in the suspicion that
CA can constitute universal automata of the sort Turing had in mind,
and thus that they could compute any function. While it is clear that
this is not generally the case (certainly not for 1D automata with k = 2
and r = 1), some CA rules have been proven to possess the capability
of universal computation (such as Conway’s Game of Life mentioned
earlier). Moreover, the global long-time behavior of a CA cannot, in gen-

!Being is eternal; for there are laws protecting the living treasures the Universe is
dressed in.

37

38

2 Artificial Chemistry and Self-Replicating Code

eral, be predicted with standard mathematical analysis (precisely because
of computation-universality), whereas the rules are easily implemented
on a computer. As such, they lend themselves naturally to the simula-
tion of complex 2D phenomena such as crystal growth, reaction-diffusion
systems, turbulent flow patterns, and many more [Gaylord and Wellin,
1995; Gaylord and Nishidate, 1996].

In a paper that appears to have relaunched the field of Artificial Life
[Langton, 1986], Langton discussed the possibility that certain aspects of
living systems may be universal, in the sense that they are independent
of the substrate upon which the rules that govern the interaction of the
parts operate. From this point of view, he set out to explore the possi-
bility of an artificial chemistry acting on artificial molecules. His medium
of choice was the cellular automata we have been discussing, with the
artificial chemistry specified by the update rules, and with virtual au-
tomata playing the role of molecules. Aware of the Wolfram classification
introduced in the previous chapter, Langton ventured to discover which
rules lend themselves most favorably to an artificial biochemistry, by
investigating rule tables that were obtained randomly. Specifically, this
was done for automata on a 2D regular lattice with eight states and a von
Neumann neighborhood. Rather then trying out all possible 83278 rules,
rules were sampled randomly, but keeping track of how many (of the
8° different) neighborhoods were mapped to the quiescent (“0”) state. To
this effect, Langton defined a parameter A that represents the probability
that a neighborhood in a particular rule is mapped to an active (i.e., non-
quiescent) state. Naturally, rule tables with A = 0 are boring: nothing ever
happens. If A is raised slightly, some regions on the array may hold some
activity for a certain amount of time which, however, will eventually die
out. This behavior is naturally reminiscent of class 1 rules. When A is
raised to about A = 0.2 (20 percent of the neighborhoods map to any of
the seven nonquiescent states), the behavior changes to a new pattern.
Single active states are persisting, or propagating steadily in a fixed di-
rection. Also, particular cycles of states can emerge that propagate across
the array. Here, we recognize class 11 behavior in Wolfram's scheme. If A
is raised some more to about A = 0.3, the activity in the array changes
again dramatically to unpredictable, complex interactions of structures,
as the mean distance between persistent active structures has decreased
to such an extent that they interact and trigger each other. 1t is in this
region where apparently the most interesting behavior takes place. For

2.1 Virtual Machines and Self-Reproducing CA

A values of the order 0.5 or more, the activity centers are so close to
each other that chaos reigns and no complex structures can survive for
long, a state of affairs best described by Wolfram’s class III. Clearly, as

A approaches 1, the dynamics becomes less interesting again, as most

rules result in active sites and the array does not display any localized
structures or interactions. To a certain extent, the A parameter seems to
set the temperature of the computational world. Let us focus therefore on
the region between A = 0.2 and 0.4, where the more interesting dynamics
seems to take place. Such rules seem to belong to the mysterious class
IV, and are the most promising as far as computational universality is
concerned.

First, we focus on propagating two-dimensional structures on the lat-
tice. From an abstract point of view, such structures can be viewed as
virtual state machines (VSMs), or more specifically, as virtual Turing au-
tomata. Trivially, if the quiescent background they propagate in is viewed
as the information tape of the automaton, such a structure reads zero, ad-
vances, and writes zero, all through the lattice. However, more interesting
structures can be found that change their state (such as the direction of
travel), depending on the value of the cell they encounter, and that leave
behind (write) cells in different states. Of course, such structures are
exceedingly rare and usually have to be constructed by hand. Still, the
important point here is that the computational medium allows for the
spontaneous emergence of virtual Turing automata that are computation-
universal. Note that the construction of such automata has enormous
consequences. If we were able to implement a VSM with the ability to
self-reproduce, we would have succeeded in constructing a minimal von
Neumann automaton (compare Section 1.4). Indeed, if a VSM is capable of
self-replication, we realize that because it is made from the same states
that constitute the information tape, there exists the possibility that the
construction automaton A, the tape-reproducing automaton B, the con-
trol mechanism C, and the tape describing all three I, are united
in the same structure. In other words, the self-reproducing VSM could
be machine and description of machine at the same time! Langton has
implemented this idea by constructing a minimal vN (von Neumann)
automaton with a CA of eight states and a vN neighborhood using 179
rules [Langton, 1986]. The self-replicating structure is a loop made out of
a sheath (cells in state 2) within which circulates the information that is
used to construct the loop (see Fig. 2.1). Left to self-replicate, the loops fill

39

2.1 Virtual Machines and Self-Reproducing CA

particular encodings used to date seem to lead to very brittle automata,
implying that essentially all mutations of a self-replicator lead to a non-
replicating structure. In principle, such a disadvantage may be overcome
by searching for a world that reacts more kindly to noise. However, due
to the number of possible chemistries in CA and the even larger number
of possible automata roaming such a world, such a search appears, with
current technology, hopeless. Nevertheless, work on self-replicating vir-
tual automata has not stopped. The simplest self-reproducing CA found
to date are 8-state CA with only 31 rules [Reggia et al., 1993], using a
design that manages to get rid of the outer sheath in Langton'’s loops. In
Fig. 2.3(a) we show a simple unsheathed loop that requires 177 rules and
replicates in 150 updates, while in (b) we depict the replication sequence
of the smallest replicator found to date, consisting of only five cells.

Due to the difficulty of finding an adequate computational chemistry
in cellular automata, one may try to look for different computational
paradigms that could harbor the promise of acting as a substrate for
Artificial Life. In a manner of speaking, such a substrate manifested it-
self, without anybody looking for it, in the form of computer viruses.
In the next section, we look towards self-replicating computer code to
fulfill the promises awakened by the possibility of self-replicating vir-
tual vN automata. In this case, as we know that our computers are
computation-universal, we do not have to work hard to construct the
artificial biochemistry.

(a) (b) <

0L-0L-00 00 0< vL 00A0< 0< VL
- 0 L>00 0L>0 00l> >00LA L>00L OLVOO
+ [

0 0 0 0 0 0

- + #< 0 0 0 A

+ P vL LO LO 00 00 0< OA VL vL L0

00 > >0 LA LA OL oL 00 00 vo
-+0-+0—+0-+ > ># 0 0 0

0 0 0

FIGURE 2.3 (a) Self-replicating unsheathed loop. The eight different states
in this CA are denoted by a blank (the quiescent state) and O#L — *X +.
(b) Replication sequence for smallest self-replicating unsheathed loop. Here,
the cells’ states are denoted by O#Lv > A < (after Reggia et al., 1993).

41

42

2 Artificial Chemistry and Self-Replicating Code

2.2 Viruses and Core Worlds

The advent of computer viruses sparked the realization that computer
code replicating in the core memory of PCs, laptops, and workstations
could serve as a substrate for Artificial Life. In their simplest implemen-
tation, viruses do nothing other than replicate in the boot sector of the
infected computer, although some viruses also attack device drivers or
command interpreters (see, e.g., Spafford, 1994). In response to the ef-
fort of antivirus experts, virus programmers modified their creations to
overcome more and more sophisticated antivirus programs using more
and more sophisticated tricks. This evolutionary arms-race created whole
phylogenies of viruses that are more or less distantly related, and their
evolutionary tree can be analyzed using the same methods as are used
for usual genetic kinship studies. In Fig. 2.4, we can see the genetic tree
of the virus family “Stoned” that infects the DOS boot sector. The kinship
analysis relies strictly on genetic rather than functional closeness of the
viruses, and compares the genome of the variants with each other and
with a copy of the DOS boot sector for reference. From the interaction
between the programs and the environment they thrive in, particular
species of viruses have adapted (by the actions of the programmers, not

FIGURE 2.4 Phylogenetic tree for the family of boot-sector viruses “Stoned”
(from Hull, 1995).

2.2 Viruses and Core Worlds

JMN (@5,$10)

FIGURE 2.5 Central part of the Coreworld system, with circular memory
of 3584 bytes and the execution queue of size L. One of the pointers in the
execution queue is pointing to the address where the instruction JMN (@5,$10)
is stored. (After Rasmussen et al., 1990.)

by random change!) to specific environments and niches. This kind of
dynamic is all too reminiscent of very simple natural living systems, and
it is this analogy that has given rise to the kind of Artificial Life we are
dealing with in this book.

On another front, in the computer game “Core War” (see Dewdney,
1984) players are encouraged to write computer programs (in a virtual
language) that fight for space in computer memory. The object of the
game is to cause all of the opposing programs to terminate, leaving the
winner's programs in sole possession of the machine. A typical strat-
egy in this game includes self-replication, thus taking over all of the
available space in this manner. Core War and the growing notoriety of
computer viruses inspired a number of researchers to seriously think
about computer programs executed on virtual processors (in order to
avoid the pitfalls of programs attacking the real processor) and having
the ability to self-replicate. The first serious attempt in this direction was
undertaken by Steen Rasmussen and coworkers [Rasmussen et al., 1990]
with their “Coreworld” program. Coreworld is a simulated computer core
arranged in a circular manner, i.e., the linear address space wraps on
itself, as indicated in Fig. 2.5. This space is seeded with assembly-like

43

44

2 Artificial Chemistry and Self-Replicating Code

instructions of the original Core War language “Redcode,” which has ten
different instructions that take two addresses as arguments. Egch argu-
ment is preceded by a mode identifier, which specifies whether the target
value is interpreted directly, or as a pointer to another instruction, or as
a pointer to a pointer. A typical instruction would be MOV (#2354, $214),
which moves the contents of memory block 2354 to the address pointed to
in block 214. In this manner, Rasmussen’s group could implement a low-
level, Turing-complete rule system in a computational medium that was
somewhere between Langton’s cellular medium and a full-fledged von
Neumann architecture. They termed it an assembler automaton. Finally,
the core was subject to noise by allowing the MOV command, which copies
an instruction from one place in the core to another, to be flawed with a
certain probability. In this manner a random component was introduced
into the system, enabling it to adapt.

The goal of Rasmussen was very close to Chris Langton’s: to construct
an artificial computational chemistry that could bear replicating artificial
molecules, in the hope that these molecules would display emergent com-
putational behavior. Unlike Langton, however, Rasmussen's starting point
was not the design of a self-replicating program, and rather than search-
ing for a set of rules that would allow universal computation, Coreworld
settled on one such world that was known to be computation-universal.
In fact, self-replicating programs can easily be written in Redcode. On the
other hand, such programs cannot withstand a noisy environment (and
indeed in the Core War game there is no explicit mutation), and as a conse-
quence these programs do not represent a fixed point of the Coreworld dy-
namics in the presence of noise. Self-replicating programs introduced into
the Coreworld do replicate for a while and introduce inhomogeneities into
the core, but die out soon afterwards. Instead, Rasmussen was interested
in the true fixed point (recurring stable patterns occurring at the end of a
simulation) for this world. Thus, rather than hoping that self-replicating
programs would just jump out of the random soup, his group counted
on the possibility that programs would emerge that copy each other, so
that maybe a network of replicating (but not necessarily self-replicating)
programs might develop that self-organize in computer memory. Ras-
mussen’s quest thus concerned the ever-intriguing question about the
environmental conditions that gave rise to life: the mystery of its origins.

The dynamics in Coreworld turn out to be very intriguing indeed. For
two rather different parameter settings, one corresponding to “desert”

2.3 The tierra System

conditions in which survival requires a certain amount of hardship, and
one termed “jungle” (where resources generally are abundant), very dif-
ferent evolutionary histories were found. While the adaptation in the
desert regime usually did not lead to very interesting behavior, the jungle
setting gave rise to complex adaptation, but very much dependent on
random events in the early history of the core. Thus, the dynamics could-
take a number of very different avenues depending on chance events
early in the development: a clear sign of contingency in the adaptive pro-
cess. One particular outcome that occurred with reasonable frequency
was a core that essentially consisted of the MOV instruction occurring to-
gether with the command SPL (which produces an additional pointer),
as this mixture turned out to be quite stable. While no program with a
fixed genotype ever emerges in this world, the overall core can evolve
to be stable with cooperating program fragments. From a dynamical sys-
tems point of view, the system supports multiple fixed points with very
delicate borders between the basins of attraction .

Still, Coreworld has a number of drawbacks (essentially the fragility
under mutations) that are a direct consequence of using the Redcode
scheme. Fortunately, it can be improved and as luck would have it, a
young biologist named Tom Ray was visiting the Los Alamos National
Laboratory (where Coreworld was developed) and looked over the shoul-
ders of the Coreworld team as they analyzed their data. Impressed by
their success and puzzled by the failures, Ray went back to the University
of Delaware and started work on the tierra system. To a certain extent, tierra
ushered in the second revolution in the still-burgeoning field of Artificial
Life.

2.3 The tierra System

While the path that Rasmussen’s team had chosen was fundamentally
sound (namely to leave the CA world because the right artificial chem-
istry in that world was too hard to find, and to turn to the chemistry
of actual von Neumann serial computers) their settling on Core War’s
Redcode as the default instruction set turned out to be too constricting.
Ray took this seriously and started work on his own Coreworld, but with a
completely new instruction set of his own design. To Ray, it was clear that

45

46

2 Artificial Chemistry and Self-Replicating Code

the brittleness of Coreworld'’s replicating programs was due to the way in-
structions were paired with operands: any time a mutation takes place on
an instruction, not only is the instruction changed but so are the operands
(the addresses upon which the instruction operates). Instead, Ray de-
cided to use a pattern-based addressing scheme, and a language where
32 instructions were coded in 5 bits (thus creating codons of length five)
but with no operands. The pattern-based addressing scheme was loosely
based on a biological paradigm. In genetic metabolisms, enzymes and
proteins recognize the target of their catalytic activity not by being given
an absolute address, but by recognizing a shape that is complementary to
theirs and binding to it. Similarly, Ray decided to introduce instructions
that do nothing when executed (so-called “No-ops”), but which carry a dis-
tinguishing mark. So, out of two such instructions (called nop0 and nop1),
Ray could fashion arbitrarily complicated patterns by stringing together
nopO’s and nopl’s. Then, a pattern-matching algorithm would be able to
search for the complementary pattern (where nop0’s and nop1’s are inter-
changed) and return its address when found. Otherwise, his language was
loosely based on Intel i860 machine language.

To implement such an instruction set, Ray had to design a virtual CPU
to go with it. His design involved an instruction pointer, four registers, a
cyclic stack that could hold ten instructions, and a number of flags (this
CPU is sketched in Fig. 2.6). Life and death in the tierra world is determined
by the two queues that every program is placed in, irrespective of its
position in the circular core. At birth, each program is entered in the
slicer queue and is executed a fixed number of instructions (the time slice)
if it is on top of the queue, and goes back to the bottom right after. Also at
birth, it is entered at the bottom of the reaper queue, and moves up the
queue as it “ages,” i.e., every time it appears at the top of the slicer queue.
If a program finds itself on top (or anywhere near the top) of the reaper
queue, it will be eliminated any time empty space in the core becomes
low, and a memory request by a mother program to place its offspring
cannot be honored. At this point, it appears opportune to explain how
programs can give “birth” to other programs in the first place!

The instruction set that Ray designed includes simple commands that
allow the allocation of memory of a certain size by issuing a single com-
mand: mal. The CPU would then check register CX (see Fig. 2.6) and
allocate a strip of memory (either close to the mother program or at an
arbitrary location) of the size of the number contained in CX. Then, with

2.3 The tiera System

1/0 Buffer

1P
=Py

AX [32547

CX
DX [oy] Stack

FIGURE 2.6 Virtual CPU of the tierra system. SQ_is the slicer queue, which
doles out time-slices to the programs, while RQ is the reaper queue, which
decides which programs are slated for elimination.

the help of the copy command, the mother program can copy instruc-
tions from its own genome into the empty space it just allocated. The
size of the space to be allocated can be determined by the mother pro-
gram by finding the address of its own beginning and end and subtracting
these two numbers. Of course the beginning and end of the program are
tagged with patterns (templates) of nop instructions, and commands such
as adrf and adrb followed by a complementary template will search for-
ward and backward for the template and return the address if successful.
After finishing the copy process, a successful program would issue the
divide command, which removes write-access of the mother program to
the daughter memory, hands the daughter program its own instruction
pointer, and enters the cell into the relevant queues. In such a manner,
computational birth has taken place! With these ideas, Ray set out to write
an “ancestral” program (reproduced in Fig. 2.7) that replicates faithfully,
and cautiously placed it into the new world.

The design turned out to be a stroke of genius, right off the bat. The
program started filling the memory, and under the action of the cosmic-
ray-like mutations that rained down on the core, started to diversify. Most
of the mutations hitting the ancestor and its offspring would cause them
to cease to be functional replicators, but the pattern-based addressing
scheme was reaping its rewards: some of the mutations would leave the
replicative abilities of the program intact, while some rare ones actually

47

2.3 The tierra System

smaller in length, their gestation time (the number of instructions that
need to be executed in order to produce an offspring program) normally
is much less than the host's, which allows them to replicate much faster
than the hosts. Thus, the parasites would take over the world until most
of the hosts were driven into extinction. At this point, another curious
dynamic started to unfold right under the astonished eyes of Ray, who
was demoted to just observe the world he had created, a world that had
taken life in its own hands rather quickly.

The parasites were dying out, partly due to having depleted the hosts,
but it was noticeable that hosts were still abundant, and more and more
so as the population of the parasites declined. Of course the question
arose as to what had caused the immunity of these new self-replicators to
the parasites that heretofore were so successful. An examination of these
hosts quickly revealed that they operated with different templates of a
form that could not be recognized by the parasites. Here then, we are wit-
nessing in a computational medium a mechanism that is quite analogous
to the development of immunity in, say, E. coli bacteria subjected to bac-
teriophages. The phage adsorb to E. coli by recognizing certain proteins
in the cell walls, bind to it, and manage to enter the cell. After exposing
a colony to such phage (which kill almost all E. coli), a few colonies will
reappear after some time that are immune to the phage, mostly because
they express different surface proteins that cannot be recognized by the
phage. Whether such a mutation is prompted by the attack of the phage
or whether it occurs randomly is a subject of much discussion [Foster
and Cairns, 1992; Lenski and Mittler, 1993). For us, it is immediately clear
what happened, as there is no mechanism for directed mutation in tierra.
The immune hosts are those that luckily had such irrecognizable tem-
plates, which due to the change in circumstances (i.e., the appearance
of the phage) became all-important. We also note that the dominance
of the new hosts reflects the presence of the parasites in the population.
Programs are clearly coevolving in tierra.

What was unfolding before Ray's eyes was a veritable arms-race be-
tween hosts, parasites, immune hosts, immunity eschewing parasites,
symbionts, “cheaters” “super-parasites,” etc., all of it emergent, none of
it anticipated. From a purely logical point of view, the barrier between
life and artificial life seemed to have come down: the universality of life
was proven. In hindsight we can see why Ray was successful where so
many others had failed. Based on the work of Langton and Rasmussen, he

49

50

2 Artificial Chemistry and Self-Replicating Code

put together a computation-universal pseudo-chemistry (the execution of
programs) with a nonbrittle and redundant instruction set, stirred a little,
and: Voild!

2.4 avida, amoeba, and the Origin of Life

The success of tierra did not go unnoticed, and a number of researchers
picked up the trail where Ray had ended up. From a scientific point of
view, tierra has a number of features that are undesirable if it is to be used
to understand the dynamics of natural living systems. While Ray moved
on to find a “natural” habitat for his critters (the brave new world of
the Internet [Ray, 1995]), the California Institute of Technology (Caltech)
became the place where tierra was used for experiments in adaptation
and the dynamics of evolution. (Results of some of these experiments
are scattered throughout these lectures.) Subsequently, it was decided
to retain only the paradigm of tiema’s success (the idea of computation-
universality and the redundant, pattern-based instruction scheme) and
to start from anew. This marked the birth of the avida software (initially
written by Titus Brown [Adami and Brown, 1994]). Charles Ofria wrote an
independent version later, which is the software included in this book and
introduced below. We also describe another mutation of the tierra system
(also designed from scratch) that enables important insights about the
origin of life, at least in this computational medium.

avida

In the design of the avida system, a number of important decisions were
made very early on. First and foremost, the periodic-core structure of
tierra and Coreworld was abandoned in favor of programs that live on a
two-dimensional grid, with only eight nearest neighbors per program.
The lack of spatial structure in tierra, while advantageous for some ex-
periments, can have serious repercussions. Even more importantly, the
global reaper queue in tierra implied that any program can, in principle,
interact with any other one in the population. The most important inter-
actions taking place in both tierra and avida arise from the birth of new

52

2 Artificial Chemistry and Self-Replicating Code

librium can be said to be achieved if the information contained in one
(usually the most successful) genome is able to propagate throughout
the entire population. In that case, a certain uniformity of the popula-
tion will be the result, which has a*negative impact on the adaptability
of the population. Indeed, a (genetically) homogeneous population can
easily be trapped in a metastable state, which often prevents evolution
to states of higher fitness. The more diversity in the population, the less
chance of becoming trapped. Many experiments with avida demonstrated
that local interactions do indeed prevent premature equilibration of the
population, enhancing the adaptive powers. Note also that due to the lo-
cal interactions, the population is much less vulnerable to infection by
parasites. Metaphorically speaking, the global reaper queue in tierra en-
tails intimate contact between all programs in the population, a behavior
much discouraged in the presence of infectious diseases!

Concurrent with the change of geometry for the programs came a
change in the way the instruction pointer (IP) behaves when it runs off
the end of the program. In tierra, when an IP failed to be redirected to the
beginning of a program, it simply ran into the following program, and so
on. If the population is dominated by programs that have lost the ability
to redirect the IP, instruction pointers would roam the entire core never
to return to the programs that owns them. As far as natural living systems
are concerned, this appears unsatisfactory. As we think of the execution
of the program as an artificial chemistry, the Caltech designers deemed
it much more appropriate that the chemistry of the program never be
disabled. Thus, they decided to let the IP loop back to the beginning of
the program automatically if it runs off the end, in effect making the code
circular, much like the actual genome of most viruses and bacteria. Still,
the ability to jump into the code of neighboring cells is maintained, if an
appropriate (complementary) template is found there.

Since in avida a cell has eight neighbors (in the default mode), the
designers also decided to introduce a facing for the programs. Thus, if a
search for a template would be launched, the search would begin in the
adjacent cell being faced by the program issuing the search, and continue
clockwise if the search was unsuccessful. Finally, the replication process
itself in avida is designed to be closer to cell division. If a program requests
memory in avida, it is allocated at the end of the mother cell such that the
genome is, during the replication process, generally doubled. The divide
command, which otherwise is very similar to the divide command in
tierra, then splits off the code at the end of the mother and places it in

2.4 avida, amoeba, and the Origin of Life

an adjacent spot, removing the cell that previously occupied it. Just how
the cell to be replaced is chosen, and other details about the replication
procedure and the structure of the virtual CPU of avida, can be found in
the User's Manual (Appendix).

As avida will be the main platform for performing experiments in
these lectures, we shall defer to Chapter 9 and the Appendix for a
more detailed exposition of the design. Instead, we shall take a look at
another tierra-inspired platform involving self-replicating computer pro-
grams. This particular system, dubbed amoeba by its creator Andrew
Pargellis of Bell Laboratories (now Lucent Technologies), was designed
specifically to investigate the issue of the origin of life.

amoeba

There is a great deal of interest in uncovering the mechanism that gave
rise to the prokaryotic cell cycle, or more generally to self-replicating
metabolisms. To a certain extent, the molecular ingredients for simple
living systems are known, and amino acids form readily under condi-
tions not unlike those generally assumed to have existed on a very early
earth. Indeed, most if not all of the essential building blocks of proteins,
carbohydrates, as well as nucleic acids and ATP (adenosine triphosphate,
the carrier of chemical energy), can be readily produced under quite gen-
eral primitive reducing (i.e., not oxidizing) conditions. Still, the origin of
life appears to be one of the most fundamental biological problems, and
naturally has attracted consideration from various incongruous points of
view. Here, we shall follow only one of the hypotheses under discussion,
namely that life can arise spontaneously from nonliving matter. Restricting
the discussion to this view reveals a fundamental bias which of course is
at the heart of this book. Only if life can emerge from nonliving materials
is Artificial Life a worthwhile enterprise.

If we accept the premise that there are universal principles governing
the dynamics of living systems, we may ask what it takes to produce
Artificial Life from nonliving materials in a pseudo-chemistry. Systems
such as tierra and avida seem to be ideal for the pursuit of this question. For
example, we may ask whether self-replicating programs can emerge from
a random core of instructions, and we may be interested in investigating
the path by which such self-replicating programs arise from nonreplicat-
ing fragments. This is in principle the question that Rasmussen tried to

53

54

2 Artificial Chemistry and Self-Replicating Code

answer with his Coreworld system, and this is the question that interested
Pargellis when he designed amoeba [Pargellis, 1996a; Pargellis, 1996b]. Like
avida, this system was inspired by Ray’s tiema, but it is customnized to inves-
tigate questions pertainingto the origin of life. The principle difference
in Pargellis’s amoeba as opposed to tierra is the choice of the instruction
set. We have emphasized the importance of the right instruction set for
evolution (which chooses the chemistry) earlier. Also, while cell death is
governed by a global reaper queue much as in tierra, Pargellis’s cells live
on a two-dimensional grid that dictates which cells are nearest neighbors.
Cells move about randomly on this grid so that the nearest neighbors
change during a cell’s lifetime.

Let us focus on the instruction set. In order to construct a set that will
allow the spontaneous generation of self-replicating programs, Pargellis
reduced the fragility of the language compared to that used in tierra or
avida by restricting it to only sixteen different instructions. Furthermore,
while in tierra and avida, for example, values in registers (and thus ad-
dresses) are not mutated directly (as opposed to Coreworld), there are
many commands that affect the registers (such as any push and pop off
the stack), as well as arithmetic operations on registers. Such instructions
are absent in Pargellis's set, as is a stack. Once addresses are loaded into
registers, they can only be changed by loading a different address. Also,
the pattern-based addressing scheme is different in amoeba. There, all
instructions can be used as patterns, and eight of the 16 instructions are
the complement of another eight. The result is an instruction set that
only requires five instructions to write a self-replicator. Note, however,
that due to the simplicity of the virtual CPU, Pargellis’s instruction set
is not computation-universal. This is an important observation that we
shall discuss later on. The obvious advantage of having such short self-
replicators is of course that all possible replicators of length five can be
written down, and as a consequence it is possible to calculate the density
of self-replicators in the space of programs of length five:

Ps = 2 ~10® (2.1)

165 ' '
Clearly this is a reasonable number, so that the random generation of a self-
replicator becomes feasible. Pargellis's instruction set displays an even
more important feature, however. The probability to find a self-replicator
of size six within programs of length six (for example) is P; =~ 2 Ps,

2.4 avida, amoeba, and the Origin of Life

i.e., longer programs have a higher probability to be self-replicators.
As a consequence, the route to efficient self-replicating programs in
amoeba usually involves the generation of long inefficient replicators first,
followed by optimization to shorter ones.

In experiments conducted with a thousand cells, in which a constant
percentage (4 percent in this case) of the cells were replaced by random
code in order to maintain the influx of randomness, and where a cell’s
instructions would be mutated with a fixed small probability (107-107%),
self-replicating programs emerged spontaneously from cells with random
code (the starting condition) in a typical fashion [Pargellis, 1996a]. First,
short programs develop that completely lack the ability to replicate, either
because they are too short (i.e., smaller than five instructions long) or
because they lack one of the crucial commands necessary for replication
(such as memory allocation, cell division, or copying). This is termed
the prebiotic phase. Often, small parasitic programs emerge in this stage
that manage to reduce the entropy of the population (see Chapter 3),
presumably by using the copy instruction of other cells, or by copying
each other. However, as these programs do not properly self-replicate,
such a drop in disorder cannot be sustained. Quite abruptly, the protobiotic
phase is entered if programs develop that copy themselves correctly once,
but fail to do so a second time around. The emergence of such programs
leads to a sustained drop in entropy, as can be seen in Fig. 2.9, which
shows the entropy (as a measure of the disorder in the population) as a
function of time (in generations, an arbitrary unit of time) for a specific,
but representative, run.

While the first clumsy replicators lead to a sustained ordering of the
population, these creatures are still fragile and can presumably sustain
their genome only inside of a colony, which is a collection of programs of
similar genotype that replicate each other if the instruction pointer is lost
to a neighbor. However, from these protoreplicators, stable self-replicators
do emerge (the biotic phase) that can copy themselves efficiently and
correctly, at around 4000 generations in the run depicted in Fig. 2.9.
Such a scenario appears to be typical in the amoeba world. Once true
self-replicators are found, they tend to optimize and shed instructions, as
smaller self-replicators are more effective than long ones in this setting.

Let us now analyze in which way the chemistry of the amoeba world
is typical or atypical as far as realistic pseudo-chemistries are concerned.
First off, irrespective on how realistic the path to self-replication is, it

55

56

2 Artificial Chemistry and Self-Replicating Code

o ‘
0 1000 2000 3000 4000
Time (gens)

FIGURE 2.9 Entropy (disorder) as a function of time in the amoeba world.
Worlds with random programs have an entropy around five. A robust self-
replicator arose at generation 1274. (From Pargellis, 1996b, with permission).

certainly points out the possibility of a particular path, namely one in
which self-replicators emerge in the limit of long sequences first. This is
of course due to the special property of the amoeba chemistry, in which
the density of self-replicators rises with sequence length. Pargellis has
measured the probability of appearance of a self-replicator in amoeba,
and the results do indicate a monotonous rise of the density of replicators
with sequence length [Pargellis, 1996b]. (Because of the still-enormous
number of possible sequences, the probabilities in Fig. 2.10 suffer from
considerable sampling errors.) As we pointed out earlier, such a rise in
the density of self-replicators is quite unlikely in either tierra or avida. In-
deed, if P, is the probability to find a self-replicator of length n in the
latter worlds, P,y is almost certainly smaller than P, because of all the
possible ways the additional instructions can modify the values in the reg-
isters of the virtual CPU. Such a modification will almost always lead to
a nonreplicator. The higher fragility (“brittleness”) inherent in the tierra
and avida chemistries seems to be connected to the computation-universal
CPU. We may thus conjecture that for a computation-universal chemistry,
P, drops monotonously with n, whereas this may be circumvented by
using a nonuniversal instruction set. This does not rule out, however,
life getting its start with a nonuniversal set, and then expanding it to

2.5 Overview

—
o
——
1

N

hdddd .
e d a0 o | P B
0O 5 10 15 20 25 30
Size (operations)

Probability (107°)
(W]

o

FIGURE 2.10 Probability P, that a random sequence of n instructions is
a self-replicator. The values P, -- - Ps are exact (indicated by solid dots). The
points with error bars were obtained from running experiments with amoeba
and counting spontaneously generated replicators of length n. (From Pargellis,
1996b, with permission.)

universality once a self-replicator arose. Indeed, one of the most impor-
tant experiments in the (artificial) emergence of life would start out with
very many possible instructions (say, for example, all the instructions of
Coreworld, tierra, avida, and amoeba combined), letting the system decide
which are the most appropriate. In amoeba, for example, it turns out that
of the 16 instructions, most self-replicators use only six or seven. Thus,
experiments with variable instruction sets may lead to important insights
into how artificial life can emerge from artificial nonlife, and teach us
something about the possible paths evolution in real systems may have
taken.

2.5 Overview

In closing this chapter, we should take a step back and contemplate the
value of experiments with artificial chemistries in the quest to understand
the basic principles operating in living systems.

57

58

2 Artificial Chemistry and Self-Replicating Code

In a time span of almost fifty years, research on Artifigial Life has
come almost full circle. It was spawned by the brilliant ideas of von Neu-
mann, who himself was inspired by the pioneering thoughts of Turing.
From von Neumann's first steps irrattempting to create a universal artifi-
cial chemistry, we have ended up using virtual CPUs modeled on those
used in ordinary von Neumann computer architectures to achieve the
goal. In so doing, we have given up more and more universality, while
for the most part (with the exception of amoeba) retaining computation
universality. Programs replicating in the tierra and avida worlds are, be-
cause of the remaining computation-universality of their virtual CPUs,
isomorphic to populations of minimal vN automata. As a consequence,
we feel compelled to speculate that such constructions constitute mini-
mal living systems, and that they may play a similar role in the quest to
understand the foundations of life as did, for example, the logistic map
(see, e.g., Mandelbrot, 1977) in uncovering the principles of deterministic
chaos.

In the following chapters, we prepare the ground for a thorough
theoretical analysis of simple systems of self-replicating entities. Two
important tools for this analysis are Shannon's theory of information
[Shannon and Weaver, 1949], as well as the general framework of statistical
mechanics and thermodynamics.

Problems

2.1 Calculate Langton’s A-parameter for Conway’s Game of Life (see Prob-
lem 1.1). According to this value, in which of the complexity classes does
this rule belong?

2.2 Estimate the number of self-replicating programs of size 11 instructions—
the smallest self-replicator with the default instruction set in avida found
to date—that can be written (consult the User’s Manual in the Appendix
on how to write programs with avida). From this ratio of replicators to
non-replicators in avida, estimate the total time necessary to find all repli-
cating programs of size 11 in avida (by examining all possible programs).
Assume that one processor can perform 1 maips (1 million avida instruc-
tions per second), and that we have at our disposal a supercomputer with
107 processors. How can you improve on this limit?

CHAPTER THREE

Introduction to
Information Theory

It is better not to speak about the *Entropy of the Universe”
L. Brillouin, 1949

The concept of information, even though it is used abundantly and in-
tuitively in ordinary language, is nontrivial mathematically. In order to
understand the dynamics of living systems, it is imperative that the no-
tions of entropy and information are understood precisely rather than
loosely. In fact, there is little doubt that the decades of confusion that
have reigned over the treatment of living systems from the point of view
of thermodynamics and information theory can be traced back to an
imprecise understanding of these concepts. Tb a certain extent, this con-
fusion is mirrored in Brillouin’s quote at the beginning of this chapter.
The discovery of the genetic code cemented the fact that information is
the central pillar in any attempt to understand life, and the dynamics of
information storage and acquisition that come with it. Let us then explore
this theory.

3.1 Information Theory and Life

Clearly one of the most stunning aspects of living systems is the com-
plexity they display so persistently in the presence of forces that work

59

60

3 Introduction to Information Theory

against the establishment of any structures, especially unlikely ones. This
chapter introduces some of the elements that are necessary to unravel
the connection between the complexity displayed by living systems and
their ability to store information. This connection is a universal trait of
all living systems, but it is especially simple in the artificial ones, and
therefore easier to investigate.

The scheme Nature evolved to store and protect information from
the deteriorating pull of thermodynamics (see Chapter 4) is a uniquely
elaborate coding-decoding device. The question is whether this scheme
is a result of historical contingency, (i.e., is just an accidental structure),
or whether it reflects constraints on the system that make the scheme
necessary, maybe even optimal. We will investigate later how this in-
formation acquisition and storage system can be responsible for the
evolution of complexity. Some of these questions can be answered us-
ing the tools of Information Theory, a framework developed by Shannon
in the mid-40s [Shannon and Weaver, 1949].

Information Theory deals strictly with messages, code, and the ability
to transmit and receive messages accurately through more or less noisy
channels. Initially, it was developed in order to gain a theoretical under-
standing of how well messages can be protected from corruption in noisy
communication channels. Nowadays, it is used in very diverse environ-
ments ranging from computer science over physics to economy and, of
course, engineering. Error-correcting codes that are the result of work in
Information Theory and applied mathematics are now at work in every
commercial CD player.

In order to appreciate the importance of Information Theory for living
systems, let us sketch the basic communication channel: our main object
of inquiry (See Fig. 3.1).

Source Noise Destination
- I s .
Encoder Channel Decoder

FIGURE 3.1 Communication channel.

3.2 Channels and Coding

Each of the units in this communication channel has a precise ana-
logue in living systems. The source of messages is the environment in
which the system under consideration lives and to which it adapts. In the
process of adaptation, genomes become correlated to the environment:
sequences of nucleotides (genes) mirror the environment’s peculiarities.
This information is encoded into the genome via a stochastic process:
mutation. Once a sequence of nucleotides has been mutated in such a
way that the host of the genome can take advantage of the properties
and peculiarities of the environment, this information is duplicated and
transmitted to the next generation. The channel for the information trans-
mission is the DNA/RNA system that expresses the DNA into proteins. It
is a noisy channel, as there are both replication errors (the incorrect copy-
ing of a base pair) and errors in the DNA due to external stress (be it heat,
ultraviolet light, or viruses). All of these contribute to a deterioration of
the information stored, and inhibit the correct transmission of the mes-
sage to its destination: the expression of a protein that is advantageous
to the host’s functioning. The destination of these messages is thus the
environment again: it is here where the organism needs to survive. Note
that in living systems, noise obviously affects not only the channel itself,
but also the encoding and decoding process. In Information Theory, the
situation is simplified: the noise is thought only to affect the channel, and
encoding and decoding can therefore be performed error-free. It turns out
that such a simplification does not change the generality of the results.
In order to make the above analogy more precise, we need to understand
the main concepts in more detail and introduce a mathematical measure
for information in order to track its fate from input to output.

3.2 Channels and Coding

Let us start by introducing the concepts of source, channel, and coding
more rigorously, yet without trying to be mathematically precise. Imagine
a source of symbols that produces messages by spewing out binary digits
that are independent and uniformly distributed. Note that such strings
of symbols by themselves do not constitute information. Only after such
strings are corvelated with certain messages that we want to send do they
reflectinformation. (This will be made clearer in Section 3.5). Conversely,

61

62

3 Introduction to Information Theory

Channel

FIGURE 3.2 Binary symmetric channel withp = ;.

we might want to be the source of the messages ourselves, in which case
we translate our message into such binary bit strings for transmission.
Note that in this case the symbols in the string will not (in general) be
uniformly distributed. After this preparation, we would like to transmit
the sequence through a channel, or medium. However, assume that the
medium is noisy (like a bad connection over the telephone). For example,
imagine that there is a 25 percent chance that the bit that is transmitted
is flipped before it arrives. Imagine also that the bits are generated with a
rate of 1 bit per second. The situation can be summarized by the diagram
in Fig. 3.2.

In most cases, an error-rate of 25 percent is inadmissible, and ways
need to be found to nevertheless transmit information accurately over
such a channel. The central question of Information Theory thus be-
comes: “Is there a way to use a noisy channel and encode messages in such
a way that it can be received and decoded with a reliability approaching
100 percent?” It is this question that Shannon set out to answer, when the
general thinking at the time suggested that this could only be done at the
expense of slowing the effective transmission rate to 0 bits per second.
Indeed, the most straightforward scheme to reduce errors in transmission
consists of repeating every bit of the message as many times as necessary,
such that given a certain error rate, the message bit could be retrieved at
the other side by a simple majority-rule. Imagine that you would like to
send a 0 through a channel, but you know that with probability %, it is
flipped to a 1. You might decide that, instead of sending 1 bit, you send a
block of 3 (each bit identical in the block), and you inform the recipient
of the message of this scheme. Then, while most such triplets have 1
bit flipped, a simple majority rule will allow the recipient to correct all
1-bit errors, i.e., the recipient will decode accurately any time zero or one

3.3 Uncertainty and Shannon Entropy

error occurred in the transmission. Note also, however, that the rate of in-
formation transmission has slowed to -;--bit per second. Also note that the
transmission is not error-free. Indeed, some of the transmitted bits will
still be decoded in error, and these are just those cases where more than
1 bit is flipped in the transmission. The probability of error, or conversely
the fidelity, of the 3-bit redundancy code isthe object of Problem 3.4. The
redundant code used by Nature is outlined in Box 3.1.

Shannon’s answer to the prevalent feeling that error-free transmission
could only be achieved at the expense of vanishing transmission rate was
his Fundamental Theorem. It asserts that in order to achieve arbitranly
accurate information transmission through a noisy channel, it is only
necessary to reduce the transmission rate to the capacity of the channel.
(Channel capacity is discussed in more detail in Section 3.7). The gain in
reliability is always achieved via coding.

To calculate how much redundancy is needed for a particular channel,
and what the optimal coding scheme is for such a channel, we need to
mathematically define a unit, or a measure, of information. Conversely,
a measure of information implies a measure of uncertainty, and both will
be introduced below.

3.3 Uncertainty and Shannon Entropy

Let us define a source of symbols X, and treat X as a random variable.
Thus, we assume that X can take on a finite number of states x,, ..., xy,
each with probability p;, ..., pn. Also, let all probabilities lie between 0
and 1, and suppose that X can always be found in exactly one of the
N states, i.e., Y.V p; = 1. We now may ask the question: “What is the
uncertainty associated with X?" This question only has a precise answer
if it is specified who is asking this question, i.e., how much is known
about the random variable X. In general, some things are indeed known
about X even though this is not always made explicit. For example, it may
be known what the probability distribution for each x; is. In the absence
of any information, we must assume that each state is equally probable,
i.e, all p; = 1/N. (This is sometimes called the Principle of Insufficient
Reason.)

63

64

3 Introduction to Information Theory

As information preservation can always be viewed as a kind of transmis-
sion channel, we may ask what scheme Nature employed to preserve the
information in the genetic code. Indeed, it is usually thought that early
living systems developed in an *environment much noisier than those
prevalent today, on an earth that was hotter, had very frequent meteorite
impacts, and was without an ozone layer. The simplest redundant encod-
ing scheme we encountered earlier is not very efficient, and indeed is
not used by Nature. Rather, more complex coding schemes are based on
codewords that encode not single bits, but entire sequences. For example,
we could invent an alphabet of letters to encode sequences of bits of
length 5:

00000 «— a
00001 «— b
00010 «— ¢

In Nature, the message ultimately is the amino acid sequence of polypep-
tides, as it is those molecules that interact with the environment via
chemistry. These sequences are formed from a 20-letter alphabet (let
us take here the letters a through t). Each such letter is coded using
a three-letter sequence, where the letters of the code are drawn from
an alphabet of four (the nucleic acids cytosine, guanine, arginine, and
thymine, denoted by CGAT), via

a «— CGA
b« CUA
c «— UCA

This scheme is redundant, since there are more codewords (64) than
there are different amino acids. Indeed, in the translation scheme Nature
has evolved, the last bit (A) of any of the above triplets can be replaced
by any other nucleic acid without disturbing the capability to correctly
transcribe. (However, this is not true for all triplets.) How well the natural
code exploits redundancy will be examined in Box 3.2.

BOX 3.1 Information Coding in DNA

3.3 Uncertainty and Shannon Entropy

Let us go back to the general situation of a random variable X, where
the outcomes x; occur with probability p;. Suppose we could associate
an uncertainty h(x;) (rather than a probability) with each possible state
of X. Then, clearly the uncertainty of X would be the average of the
uncertainties h(x;) over all i: .

N
H(X) =) _pih(x) . (3.1)

The uncertainty H(X) that we would like to construct needs to conform
to a number of axioms, which are mostly intuitive. The first is the axiom
of monotonicity:

(i) monotonicity: The higher the number of (possible) different states in
a system, the higher its uncertainty,

HN(X) > HN'(X) if N> N.

(ii) additivity: Uncertainty about two unrelated systems is equal to the
sum of uncertainties of each,

HX,Y)=HX) + H(Y) if X and Y uncorrelated.

Interestingly, there is a unique function that satisfies these axioms,
namely h(p;) = log(1/p:;). With this, we have the Shannon entropy or
uncertainty:

N
HX) = — ch,- logp; . (3.2)

The constant C in front of this expression is related to the base chosen
to express the logarithm. For simplicity, we shall take our logarithms
to the base 2, which means C = log2 = 1. Let us now examine Shan-
non uncertainty more closely and try to understand intuitively what it
measures.

For example, we may ask what the probability is of successfully pre-
dicting the state of a random variable X, armed only with the knowledge
that X can be in N states, each with probability p;. The answer is surpris-
ingly simple in terms of the Shannon uncertainty. This probability turns
out to be just

p=2"H® (3.3)

65

66

3 Introduction to Information Theory

Note that in the absence of any information (the “insufficient reason” case
mentioned earlier), we have p; = 1/N, and therefore H(X) = logN. As a
consequence, P = 1/N, as we would expect. Note that we have discovered
another important property of Shannon entropy:

N
H(X) = —) pilogp: <logN, (34)

which expresses the idea that if we know that the probabilities for each
state are not equal, then the uncertainty about this system is less than
the maximal value. More precisely, h(x;) is the uncertainty removed from
H(X) if it is revealed that x; in fact has zero probability to occur as one
of the states of X. In other words, H(X) can be viewed as the average
uncertainty removed by revealing an average state x; of X.

Another way of viewing uncertainty is as the “average number of
yes/no questions needed to reveal the state of X precisely” Indeed, this
is just a consequence of one of the formulas introduced above. As

PO = Z—H(X) —_ (}_)”(X) (3 5)
= = 3 , .

we see that with each (judiciously chosen) question, the probability of
predicting incorrectly is reduced by a factor 2. Thus, on average we need
only ask H(X) such questions to reveal X. This is explored further in
Problem 3.1.

3.4 Joint and Conditional Uncertainty

After having treated the uncertainty associated with one variable (or
more generally one system), we should consider the joint uncertainty of
composite systems. This endeavor might seem trivial at first, on account
of the additivity theorem introduced earlier. Note, however, that we in-
sisted there that the two systems were uncorrelated. The insight gained
by examining composite systems lies precisely in the correlations that
might exist between the two. Imagine, then, two random variables X and
Y, with X as before but Y having N’ states, and define the probability for
X to be in state x; and Y jointly to be in state y;:

PX =x; and Y = y;) = p(x;, y)) . (3.6)

3.4 Joint and Conditional Uncertainty

This allows us to define the joint uncertainty

N N’
HX,Y) = =) > p(x,y)logp(,y;) - (3.7)
v

It is easy to show the subadditivity character of this expression:

H(X,Y) < HX) + H(Y) . (3.8)

Earlier we saw that if two systems are uncorrelated, the joint entropy
must be given by the sum of the individual entropies. Now we see that if
this is not the case, there must be correlations present between X and Y.
Let us illustrate correlations by a simple example.

Imagine a lattice of size N x N = M, where each lattice point can
harbor a ball labeled X or Y (see Fig. 3.3). Also, let us imagine that a
ball is dropped randomly on the lattice such that each of the slots have
an equal probability to be occupied (unless they are already occupied,
in which case their probability to be occupied is zero). If we drop the
X-ball or the Y-ball independently, the uncertainty of their position is
H(X) = H(Y) = log(M), as there are M slots on the lattice. However,
imagine now dropping the balls consecutively. Because the second ball
dropped has one less slot to choose from, the joint uncertainty for the
two balls is less than 2 log(M):

H(X,Y) = log(M) + log(M — 1) < 2log(M) . (3.9)

In this case the correlation is very small because both balls simply
can't occupy the same slot. Much stronger correlations are introduced if
we imagine tying a string between the balls in such a way that they have
to occupy adjacent slots (Fig. 3.4). If we then drop this contraption onto
the lattice, the uncertainty in the placement of the first ball (naturally,
we now must drop the balls simultaneously) is still log(M). The second
ball, attached to the first, however, has only four options: to the west,
east, north, or south of the first. The joint uncertainty is then (neglecting
edge effects)

H(X,Y) = log(M) + log(4) . (3.10)

In this case the joint uncertainty is reduced considerably, and the loca-
tions of the balls are tightly correlated. Moreover, knowing the location

67

68

3 Introduction to Information Theory

0]0]0]0]0]0]0)0]
0]0]0]010)0)0]0,
ole] lelelelele
OO000000O
0]0]0l0]0]0]0)0
olejelele]l 100
OO0000000O
OO0000000

FIGURE 3.3 Lattice of M sites with two sites filled randomly.

of one bhall allows us to predict the location of the other with reason-
able certainty. This leads us to the concept of conditional probability and
conditional uncertainty.

Define the probability to find Y in state y;, given that X is in state
%;, as p(y,|x). The vertical bar in the probability is used to express this
conditioning, and the conditional probability is usually read as “y knowing
x, or “y given x" In the previous example, we clearly have

py;lx) =0 if y; not adjacent to x;, (3.11)
1
pyilx) = 2 if y; adjacent to x; . (3.12)

Armed with such probabilities, we can define conditional uncertainties,
expressing the uncertainty about a variable when some other variable is
known. For example, we can define the uncertainty of Y given X = x;:
N
H(Y|X = x) = =) _p(y,lx) logp(y;lx) - (3.13)

Note the particular constructiori of this uncertainty: it looks just like a
conventional uncertainty but with the ordinary probabilities replaced by
conditional probabilities. The quantity H(Y|x;) is read as the “uncertainty
of Y given X takes on the particular value X = x,;” The conditional uncer-

3.4 Joint and Conditional Uncertainty

00000000

FIGURE 3.4 Lattice of M sites with two sites filled in a correlated manner.

tainty H(Y|X), which is the uncertainty about Y knowing X (X taking on
any value), is just the average of (3.13) over all the possible outcomes of
X:

N
H(Y|X) = ~) p()H(Y|%)

N N
= =)D p)pW;lx) log p(y;ix) . (3.14)
T

The last expression can be simplified noting that

rx) py;lx) = p(xi, y;) , (3.15)

i.e., that the conditional probability for y; to occur given x; occurred
multiplied by the probability that x; occurred is just the probability that
both x; and y; occur simultaneously. This relation (also known as Bayes’
Theorem) is used often and effectively in Information Theory. We can
then write the expression for the conditional entropy in the usual manner:

N N
H(Y|X) = =)) " p@,y)) logp(y;lx) - (3.16)
i

69

70

3 Introduction to Information Theory

Using (3.15) and its twin obtained by exchanging x and y, one can prove
the relations between conditional and joint entropies:

H(X, Y) = H(X) + H(Y|X) (3.17)
= H(Y) + HX|Y) . (3.18)

Before introducing the all-important concept of information, let us briefly
mention a property of conditional entropies, namely that the revelation
of the value of X does not ever increase the uncertainty about Y:

H(Y|X) < H(Y) . (3.19)

It is easy to see that the equality holds if and only if the variables X and Y
are independent, i.e., if p(x;, y;) = p(x)) p(y;). Then, indeed, revealing the
value of X does not change the uncertainty about Y. Let us now pinpoint
this correlation between random variables, and see how it leads to the
concept of information.

3.5 Information

Information is defined as the correlation entropy (or mutual entropy) be-
tween two random variables or two sets of random variables. As before,
take two random variables X and Y, with joint entropy H(X, Y). The in-
formation shared between the two (start keeping in mind from here on
that information is always shared between two ensembles) is

I(X:Y) = HX) + H(Y) - HX, Y) . (3-20)

Rewriting this as H(X, Y) + I(X:Y) = H(X) + H(Y), we realize that the
information is that piece of entropy that would have to be added to the
joint entropy in order for the combined system to have the same entropy
as the sum of the entropies of the subsystems X and Y. In other words, if
the joint entropy is not equal to the sum of the entropies of its subsystems,
there is a correlation between these subsystems, and this correlation gives
rise to information.

We can also examine this from another point of view. If there are cor-
relations between the subsystems, then by possessing knowledge about
one of the systems, you can extract knowledge about the other. Indeed,

3.5 Information

using some of the formulas derived in the previous section, we find that

I(X:Y) = H(X) — H(X|Y) , (3.21)

i.e., information is the difference between the entropy of X and the con-
ditional entropy of X given Y. To distinguish the correlation entropy (or
mutual entropy, or sometimes mutual information) I(X:Y) from the other
entropies introduced earlier, we put a colon (:) between the two parts, here
X and Y. Note that mutual entropy is symmetric, i.e., I(X:Y) = I(Y:X),
unlike the conditional entropy. To show that I(X:Y) has the functional
form of an entropy, we can introduce a mutual probability

px)ply;)
oy = 2XPYD 3.22
p(xi Yj) PG, y;) ()
and find with ease
N N
IXY)y=- ZZp(x,—,y,-) logp(x; 1 y)) . (3.23)
tj

Before illustrating the concept of information with examples, let us
consider a diagrammatic way of summarizing the relationship between
all the entropies introduced so far. We shall think of entropies as areas of
circles that can intersect with other circles (the entropy of other systems).
Ifthe intersection between the circles of X and Y, say, is zero, the variables
are uncorrelated, while the envelope of the two circles represents the
joint entropy of the two. Thus, for X and Y we can draw (in general)
a diagram, as in Fig. 3.5. This can easily be extended to represent the
relationships between the entropies of three systems X, Y, and Z, as
in Figure 3.6. The notation introduced for mutual entropies conditional

H(X) H(Y)

FIGURE 3.5 Entropy Venn diagram for two random variables X and Y.

71

72

3 Introduction to Information Theory

H(X) H(Y)

H(Z)

FIGURE 3.6 Entropy Venn diagram for three random variables X, Y, and Z.

on a third variable [I(X:Y|Z), for example], or entropies conditional on
joint variables [such as H(X|YZ)] should be self-explanatory. Note that all
entropies introduced so far are positive semi-definite, i.e., they are strictly
positive or zero, but never negative. The lone exception is the ternary
mutual entropy I(X:Y:Z), which can be negative (see Problem 3.2). This is
so because it represents shared entropy between more than two systems.
Note also that the positivity of some of the entropies introduced here
(notably the conditional one) is not guaranteed if quantum variables are
involved [Cerf and Adami, 1997] (see also Problem 3.3).

Let us now calculate the information for some of the examples intro-
duced earlier. In the case where two balls labeled X and Y are dropped
randomly on the lattice (Fig. 3.3), we found that the joint uncertainty
(entropy) was just a little smaller than the sum of the uncertainties for
each of them. Thus, we expect the amount of correlation, or information,
to be small. Indeed,

I(X:Y) = H(X) + H(Y) — H(X, Y)
= log(M) + log(M) — log[M(M — 1)]

= —log (l - i)) (3.24)

3.6 Noiseless Coding

Thus, in the limit of large M, I(X:Y) =~ 1/M — 0. The situation is different
when a string is tied between the two balls (Fig. 3.4). In that case

M
I(X:Y) = HX) — HX|Y) = logZ , (3.25)

where we used the fact that the conditional entropy for the second ball is
log 4 = 2 bits. We could have calculated this directly using the conditional
probability (3.12). .

Finally, let us introduce a notation for the entropies showing that they
are really the same as the corresponding entities in statistical mechanics
(introduced in the next chapter):

H(X) = —(logp(®)) , (3.26)
H(X|Y) = —(logp(x|y)) , (3.27)
I(X:Y) = —(logp(x : y)) , (3.28)

where the brackets, as usual, indicate statistical averages. Note, how-
ever, that in equilibrium statistical mechanics and thermodynamics, the
conditional and mutual entropies play hardly any role, as all those correla-
tions that are not permanent disappear once one has reached equilibrium
(compare section 4.9). Thus, as I(X:Y) = 0 in equilibrium, conditional en-
tropies H(X|Y) and unconditional entropies H(X) are then identical. Still, if
there are permanent correlations (such as the walls of a container that do
not allow a gas to escape), the entropies written down in thermodynamics
really are conditional entropies, conditional on the boundary condition
imposed by the fixed correlations. In this respect, the only unconditional
entropy is that of a completely isolated system. Still, conditional and
mutual entropies do play a role in nonequilibrium thermodynamics. We
shall exploit this later with respect to the evolution of complexity and the
concept of measurement.

3.6 Noiseless Coding

Armed with the concepts of entropy and information, we can now in-
vestigate how good or bad a certain code used to encode information is,
and how much a code could be improved. Our first concern is to make

73

74

3 Introduction to Information Theory

messages as short as possible, as the longer messages are, the more target
they offer to noise. To investigate this, we again use our random variable
X that can be in states x; - - - xy with probabilities p, - - - pn, and translate
these messages into codewords formed from an alphabet {a, - --ay}, e.g.,
Xy = asa,, x4 — a;aas, etc. If we associate to each message x; a codeword
of length n;, we arrive to the average codeword length

N
(n) =) pin;. (3.29)

We would like to find then, of course, the code that minimizes the average
codeword length. First, we need to mention, however, that not just any
assignment x; — axaia,, - - - corresponds to a viable code. Indeed, a code
must be made in such a way that it is uniquely decipherable. An example
of an undecipherable code is given below:

Clearly, the messages b, ca, and ad are all coded as 010, preventing an un-
ambiguous decoding. This is because in the code above, some codewords
appear as prefixes to other codewords, like 0 and 01 are both prefixes to
010. Then, a necessary condition for a good code is that no codeword can
be a prefix to another codeword. Such codes are called instantaneous, or
step-by-step decodable. If we confine ourselves to codes of that nature, we
can state the following theorem:

A code made from an alphabet of size D and codeword lengths n; to
encode messages exists if and only if

N
ZD‘"' <1. (3.30)

We can quickly check if this works for DNA, as we know that this code
exists. For DNA, the length of each codeword n; is 3 (these codewords
are also called codons). The size of the alphabet is, of course, D = 4,
and the set of messages is the 20 different amino acids making up the

3.7 Channel Capacity and Fundamental Theorem

polypeptides. Thus, N = 20, and we find

N
20

Y D"=20-47==<1. (3.31)
,. 64

Thus, this (slightly trivial) example teaches us that with the genetic code,
we could have coded up to 64 different amino acids. Nature has not
chosen to do this, of course, but rather has opted Yor a certain amount
of redundancy. Remember that the above theorem only guarantees the
existence of a code, not how well it holds up under noise. Let us now
answer the more difficult question of how small the average codeword
length can be made to be. This is the content of Shannon’s Noiseless Coding
Theorem, which states that there is a lower bound to (n), essentially given
by the entropy of the source
H N

(n) > logg = - Zpi logp i , (3-32)
where we have indicated on the righthand side the logarithm to the
base D, the size of the alphabet. The equality holds when the source
is equiprobable, and p; = 1/D™. Rather than proving this theorem (as
is done in all standard Information Theory textbooks), we discuss the
average codeword length of DNA in Box 3.2 as an example.

An optimal code is an instantaneous code for which

H(X) H(X)
1ogD = ™M S ioep t1° (3.33)

With H(X)/log D = 2.105 for human DNA derived in Box 3.2, we conclude
that DNA is an optimal code!

3.7 Channel Capacity and
Fundamental Theorem

This section covers communication channels whose inputs are subject to
random disturbances in transmission. If we view inheritance of genomic
information as just such a transmission channel, we can develop a formal-
ism that allows us to judge how well Nature has mastered communication
over noisy channels.

75

76

3 Introduction to Information Theory

If X is the source of amino acids x, - - - x5, let us calculate the minimum
codeword length under the assumption that all amino acids occur with
the same probability p; = 2—15. This is, of course, not true in reality as the
abundances vary between 1% and 10% (equiprobability would imply a
uniform abundance of 5%). As we shall see, the assumption of equiprob-
ability, however, is not too bad. In that case the entropy of the source

18

H(X) = log, 20 = 4.322, (3.34)
such that
H 4.322
X =—"=216. (3.35)
logD 2

Thus, the minimum codeword length would be (n} > 2.16. Seeing that not
all amino acids occur with the same probability, we can cull the probabil-
ities for specific families of organisms from tables (see, e.g., Brown, 1991
and Box 3.3). For humans, the abundances vary between 1.38% (trypsin)
to 9.56% (leucine). There is also, in fact, a stop amino acid that signals
the end of a string. As it occurs with a very small probability (0.24%), we
can ignore it here. With the specific measured abundances, the entropy
of the source is lowered as expected, and we find

20
HX) = — Zpl— log, pi = 4.2108 . (3.36)

i=1

The minimum length, then, is H(X)/log D = 2.105. Thus, a code of aver-
age length 2 can almost exist. If some amino acids were more dominant
(exceeding 10%, for example), while a few others were correspondingly
more rare, (n) = 2 could easily be achieved. Note, however, that it would
come at the expense of codes with varying codeword length, a scheme
with logistics too daunting for Nature to adopt.

BOX 3.2 Noiseless Coding in DNA

A channel is a device that translates a coding {a;, ..., a,} to a cod-
ing {b,..., by} with probability distributions P, associated with the
translation of each symbol. Thus, we can construct a channel matrix

aj =p(h,-|a,-) , (337)

3.7 Channel Capacity and Fundamental Theorem

Channel

H(a) —»| H(ab) | —» H(b)

FIGURE 3.7 Noisy channel with channel matrix p(b;|a;).

where p(bj|a;) is the probability to obtain output bj, given input a;. If we
enter a channel with a probability distribution on the input alphabet with
uncertainty H(a), we end up with a probability distribution on the output
with entropy H(b) (see Fig. 3.6). The noisiness of the channel can then
be described by the joint uncertainty H(a, b). If there is no correlation
between a and b, i.e., between input and output, we are dealing with a
useless channel, and

H(a,b) = H(a) + H(b) . (3.38)

On the other hand, if there is complete correlation, we are dealing with a
perfect channel, and

H(a,b) = H(a) = H(D) . (3.39)

The previous can also be expressed in terms of the mutual entropy, or
information I(a:b). For a useless channel we have I(a : b) = 0, whereas
for a perfect channel I(a : b) = H(a) = H(b).

Having described these simple limiting cases, we can turn to the
central question of Information Theory. What is the maximal amount of
information that the channel can process (with arbitrary precision) in
the presence of noise? To answer this question, Shannon introduced the
concept of the channel capacity. In words, the channel capacity is the
maximal mutual entropy between input and output distributions, where
the maximization is performed over the input distribution:

C=maxI(a:b). (3.40)
p@

Shannon's fundamental theorem (which we will not prove here) can
now be stated in terms of this channel capacity: “It is possible to transmit
information at a rate less or equal to the channel capacity with arbitrarily
small probability of error” This is a somewhat surprising result, as this the-
orem does not involve the amount of noise in the channel. It contradicts

77

78

3 Introduction to Information Theory

the notion (widely held before Shannon) that as the noise goes up, the rate
of impeccable information transmission must go to zero. Rather, Shannon
stated that it is bounded from below by a constant, the channel capacity.
This can be achieved by means of redundancy and error-correction.

An obvious strategy is suggested by the form of the channel capacity
for symmetric channels, i.e., channels in which the error probability does
not depend on which bit goes through the channel. In that case, H(a|b)
is independent of p(a), and it is then sufficient to arrange for a coding in
such a way that every symbol received at the output occurs with about
equal probability. Then, H(b) is maximized, and consequently also I(a:b).
Let us consider an example of coding that uses redundancy. Suppose we
send messages of length 2 bits. Theoretically, we can use the alphabet
{0, 1} to code for the messages {a, b, ¢, d}:

a— 00
b— 01
c— 10
d—11

However, any bit-flip in the coding will make the message irretrievable.
A redundant code would use, for example,

a — 00000
b —> 01101
¢ — 11010
d— 10111.

In this coding, 2 bit-flips have to occur before decoding becomes ambigu-
ous. Error correction can be performed on such codes, as for example the
erroneous code 11111 can unambiguously be traced back to the string
10111 (no other string could have given rise to 11111 if only one error
occurred). In that case, a simple algorithm can flip back the bit to restore
the string 10111. Redundancy is also used in genetic channels to protect
against errors (see Box 3.3). More importantly, however, Nature uses the
double-strandedness as a very effective way of protecting against errors.
As nucleotides always have to be paired, an erroneous substitution can
be detected as long as only one member of the pair is affected. A very so-
phisticated molecular error-correction mechanism can detect such errors
and correct them.

3.7 Channel Capacity and Fundamental Theorem

The following table shows the translation between RNA codons and
amino acids in humans. The relative abundance of the amino acids is
indicated (in percent) behind the three-letter code for the amino acids.

Am.-acid ([%]) | Codings

ARG (5.28) | CGA CGC CGG CGU AGA AGG
LEU (9.56) CUA CUC CUG CUU UUA UUG
SER (7.25) UCA UCC UCG UCU AGC AGU
THR (5.68) | ACA ACC ACG ACU

PRO (5.67) | CCA CCC CCG CCU

ALA (6.99) | GCA GCC GCG GCU

GLY (7.10) | GGA GGC GGG GGU

VAL (6.35) | GUA GUC GUG GUU

LYS (5.71) | AAA AAG

ASN (3.92) | AAC AAU

GLN (4.47) | CAA CAG

HIS (2.36) | CAC CAU

GLU (6.82) | GAA GAG

ASP (5.07) | GAC GAU

TYR (3.13) | UAC UAU

CYS (2.44) UGC UGU

PHE (3.84) | UUC UUU

ILE (4.50) | AUA AUC AUU

MET (2.23) | AUG

TRP (1.38) | UGG
STOP (0.24) UAA UAG UGA

Note that the most abundant amino acids usually have the most re-
dundancy. For example, the rare amino acids MET and TRP are only
represented by a unique codon. An exception is the twenty-first combi-
nation STOP, which signals the end of a protein sequence. It must be
relatively rare, but it is extremely important for the functioning of the
organism that the STOP sequence is read correctly. As a consequence, it
has a much larger redundancy than its abundance would suggest.

BOX 3.3 Actual Coding in Human RNA

79

80

3 Introduction to Information Theory

3.8 Information Transmission Capacity
for Genomes

Let us now turn to self-replicating genomes and view them as information
transmission channels. In essence, we consider a genome at time ¢ as the
source of messages, and the genome at time t+ 1 as the received message,
where the unit of time is the time it takes to copy the genome once, i.e.,
the gestation time of the genome. Let the genome be of length £, and the
copy process be flawed with a rate R. Then, the fidelity F of the copy
process is

F=(1-R)" (3.41)

The information processed by the channel is just the mutual entropy
between the population of genomes at time t and at time ¢ + 1:

H(t+1:t)=H({t+1)—HE+1}p) (3.42)

where H(t+ 1|t) is the conditional entropy of the population at t+ 1, given
the population at time t. In extreme simplification, this can be calculated
using the copy-fidelity F. The channel matrix (3.37) can be written in such
a manner that the diagonal terms are just the conditional probabilities
that the genome is copied correctly, whereas all other elements indicate
the probability for copy errors. Let us imagine an equilibrated situation,
where each genome can take on N states. Note that this idealizes the
real process tremendously, as we keep the number of possible states N
constant, and we treat the copy process simply as an error rate acting on
the symbols. The channel matrix, then, is

1-F 1-F

F N—-1 N-1

1-F 1-F

N-1 N-1
: F
1-F 1-F

N-1 -1 F

The conditional entropy is just the entropy of one of the rows (as this is
a symmetric channel):

H(t+ 1|ty = —FlogF — (1 — F)log

1-F

an (3.43)

3.8 Information Transmission Capacity for Genomes

The entropy of the population at any time t + 1 can be estimated from
the equilibrium distribution at time t, and using the conditional probabil-
ities to obtain the distribution at time ¢t + 1. The entropy at time ¢, on
the other hand, can be estimated from Eigen's model of self-replicating
molecules (see Section 11.3), which indicates that almost all molecules
have abundance

1-F

= ——) 3.44
p N (3.44)

whereas one (the quasi-species) has abundance F. The entropy H(t + 1)
is then obtained with the probabilities
_py 1 2F 3.45)
hn = N ' (.
_0=-p? 1-F

‘"' N-1 NKN-1 (3.46)
so that in the limit N — oo,
H(t+1:1) = Hy[F?| — Hy[F]+ F(1 — F)log N . (3.47)
For large N, this function is dominated by the last term, so that
H(t+1:/logN~F(1—F) ~e ™1 -eR, (3.48)

which is shown in Fig. 3.8 for different string lengths ranging from 30 to
150, and for mutation rates 0 < R < 0.1. Note that the function peaks at
F=1je.

z ’ ?

Re€=~1log, 2. (3.49)

For fidelity F =~ %, i.e., mutation probabilities of about 0.7 times the in-
verse length of the sequence, the channel transmits the optimum amount
of information. This capacity then acts as a bound on the rate of infor-
mation acquisition in genomes. There can be no process that achieves
a higher rate of arbitrarily accurate information processing in this chan-
nel. We shall show in Chapter 11 that for more realistic channels (where
the probability to mutate to another sequence is not uniform), we find a
different optimal rate, closer to R¢ = 1.

It is worth noting that such a channel is quite peculiar and unlike
any channel usually encountered in information theory, as the entropy
of the source ensemble is tied to the error rate 1 — F. Thus, if the copy
process were perfect (F = 1), the channel still has no capacity here,

81

3 Introduction to Information Theory

0.30 T T T T

0.25

0.20

0.15

I (R)

0.10

0.05

0.00 4
.00 .02 .04 .06 .08 .10
R

FIGURE 3.8 Mutual entropy calculated from Eq. (3.48) for £ = 30, 50, 75,
100, and 150.

because for F = 1 the population has (asymptotically) zero entropy, and
thus cannot share any entropy with another system (see Problem 3.5 for
the equivalent binary symmetric channel). The mutual entropy here is
therefore not that amount of information that one genome passes along to
the next generation, but rather the information processed by the channel,
which in this case puts a limit on how much information the genome can
acquire and store. Thus, it measures how much the genomes can learn.
In order to calculate how much information is passed from generation to
generation, we need to take into account the redundancy due to the many
copies of the genome in the population. As this number is usually very
large, the entire genome is usually passed on through every generation,
a virtually perfect channel.

3.9 Overview

This chapter introduced the concepts of entropy and information in order
to study the statistical aspects of information acquisition and storage of
genetic systems. Information is not the description of an object in terms

Problems

of bits, or the number of bits necessary to describe an object, but rather
the mutual entropy between two ensembles. In other words, informa-
tion measures the amount of correlation between two ensembles, which

allows you to make predictions about one ensemble armed only with .

probabilities garnered from another. Limits on error correction and reli-
able information transmission were introduced, and finally, the genetic
replication process was investigated in terms of an information transmis-
sion channel. There, we found that genetic channels are very different
from the ordinary ones, because the process that corrupts the messages
also controls how much entropy is being sent across the channel. Thus,
a channel with a perfect copy-process turns out not be a channel at all,
as all messages are identical in such a population (zero entropy ensem-
ble), and the information transmission capacity vanishes. Thus, it turns
out that there is an optimal error rate for genetic channels that allows
the maximum rate of information processing. Such a rate is inversely
proportional to the length of the code, a proposal that we shall test in
Chapter 11.

Problems

3.1 (a) A fair coin is flipped until the first head occurs. Let X denote the
number of flips needed until this happens. Thus, X is a random
variable. Find the entropy H(X) in bits.

(b) If a random variable is drawn from this distribution, find an efficient
sequence of yes/no questions to determine the value of that vari-
able. Compare H(X) to the expected number of questions required to
determine X.

3.2 (a) The mutual entropy between two random variables H(X:Y) is positive

 semidefinite (always larger than or equal to zero). The ternary mutual

entropy between three random variables can be negative, however

(see Fig. 3.6). Find binary random variables X, Y, and Z such that
H(X:Y:Z) = —1 bit. (Hint: think of logical operations.)

(b) Express (use Venn diagrams!) H(X:Y:Z) in terms of the entropies of
each of the random variables alone, mutual entropies between all
pairs of variables, and the joint entropy of all three.

83

84

3 Introduction to Information Theory

33

3.4

3.5

Two binary random variables are said to be 100% uncorrelated if the
conditional probability matrix is

I U] Y2

X1 1/2 1/2 .
* Xy 1/2 1/2

whereas the variables are 100% correlated if

Y
X1 1 0
X3 0 1

(a) Draw the entropic Venn diagram for both situations.

(b) Draw the diagram for the nonclassical situation where the entropy
of each random variable is 1 bit, but where the joint entropy of both
vanishes (so-called EPR pairs).

For the binary symmetric channel with error rate p, calculate the proba-
bility of faulty transmission (1 minus the fidelity) of the 3-bit redundant
code shown below:

0 — 000
1 111. (3.50)
(a) Again for the binary symmetric channel, find the mutual entropy
between messages and received symbols for the case where the prob-

ability to find 0 or 1 as a message is equal to the noise in the channel
(the binary analogue to the genetic channel).

(b) Find the probability p that maximizes the mutual entropy.

84

3 Introduction to Information Theory

3.3 Two binary random variables are said to be 100% uncorrelated if the

3.4

3.5

conditional probability matrix is

| Y Y2
x| 1/2 1/2 .
X2 1/2 1/2

whereas the variables are 100% correlated if

Y U
X1 1 0
X2 0 1

(2) Draw the entropic Venn diagram for both situations.

(b) Draw the diagram for the nonclassical situation where the entropy
of each random variable is 1 bit, but where the joint entropy of both
vanishes (so-called EPR pairs).

For the binary symmetric channel with error rate p, calculate the proba-
bility of faulty transmission (1 minus the fidelity) of the 3-bit redundant
code shown below:

0 — 000
1> 111. (3.50)
(a) Again for the binary symmetric channel, find the mutual entropy
between messages and received symbols for the case where the prob-

ability to find 0 or 1 as a message is equal to the noise in the channel
(the binary analogue to the genetic channel).

(b) Find the probability p that maximizes the mutual entropy.

CHAPTER FOUR

Statistical Mechanics
and Thermodynamics

Tout se fait dans le monde par la matiére et le mouvement.!
René Descartes

This chapter introduces basic concepts and methods from statistical me-
chanics and thermodynamics. Since our goal is to construct and analyze
populations of self-replicating code in order to establish a baseline for
minimal living systems, we need a theoretical framework to describe
such populations without having to understand in detail the interac-
tions between each and every member. This is precisely the object of
statistical mechanics and thermodynamics: to describe the behavior of
an aggregate, knowing only the forces between the microscopic con-
stituents. Therefore, statistical physics must be the basis of any theory of
complexity.

This chapter can be used in different ways. A reader unfamiliar with
the basic constructions of thermodynamics can use it as a primer, but
not as a substitute for a thorough study of the subject (see Landau and
Lifshitz, 1980 for such a purpose). Alternatively, a reader who has had a
basic course in statistical physics can browse through the topics and stop
only at the shaded boxes, which contain applications of the theory to pop-
ulations of self-replicating strings. Elements of statistical mechanics and
thermodynamics are used throughout these lectures. The reader is thus

'Everything in the world is made from matter and movement.

86

4 Statistical Mechanics and Thermodynamics

invited to refresh his or her acquaintance with terms used throughout
different chapters with the short expositions presented here.

In statistical physics, we study the specific laws that goverh the be-
havior and properties of macroscopic bodies that are made up of very
many microscopic particles (e.g., atoms, molecules, or any units). These
laws emerge from a process of averaging over the possible configurations
that the system can take on, and are more accurate the larger the number
of microscopic particles. Rather than derive these laws (something that
is done in most standard textbooks), we shall study their predictions as
far as they concern living systems. Theoretically, there is another ap-
proach that would let us predict the dynamics of many particles: writing
down the system of coupled differential equations that describe them,
and solving that system numerically using the initial conditions for each
particle. This is difficult for two reasons. On the one hand, the numer-
ical solution of the differential equations would, with current computer
technology, take longer than the age of the universe for decent-sized
problems and satisfactory accuracy. On the other hand, it appears impos-
sible to specify (or know) the initial conditions accurately enough for a
system with a large number of components. Nevertheless, this compu-
tational approach to statistical systems has led to important insights in
specialized systems, and is of course the only avenue open when such
general laws as those of statistical mechanics and thermodynamics are
unavailable, i.e., when the interactions are so complicated that a simple
(mathematical) averaging over possible configurations is impossible. In
the following, we introduce the basic concepts that allow us to describe
systems with a large number of degrees of freedom, and try to understand
what the circumstances are under which such a description is possible.
This will be interspersed by application of these concepts to the statistics
of self-replicating strings of code, such as DNA-strings or the bit-strings of
our self-replicating computer programs.

4.1 Phase Space and Statistical
Distribution Function
In order to accurately describe the behavior of an aggregate of particles

(agents, units), we first need to find a characterization of the essence of
each unit. In statistical mechanics, for example, we deal with point par-

4.1 Phase Space and Statistical Distribution Function

ticles, each described by its position and its velocity. In more general
systems, we may have to specify more attributes, e.g., a magnetic mo-
ment, or a minimum volume occupied by each particle. In any case, the
determination of the basic degrees of freedom of each subunit is going to
determine the accuracy of the general laws that are going to emerge. In
the simplest situation, the specification of position and momentum is
enough: the state of each particle is determined by the pair
@p),) (4.1)
i.e., by six numbers (in three dimensions). Then, the state of a macro-
scopic number of particles is specified by those six numbers for each and
every particle in the system, i.e., (g;, p;) for each particle i (we omit the
vector notation from now on and think of each g; or p; as representing
three numbers).
In order to follow the evolution of each particle’s state, we construct
a space in which every state is just one point: this is the phase space. For
example, in one dimension, the temporal evolution of one particle can
be described by a curve in (g, p) space, as depicted in Fig. 4.1. Thus, each
particle traces out a trajectory in phase space given by the coordinates
[g(®), p(t)]. Let us now imagine a two-particle system. Each state of the
system is then specified by the numbers (q,, p1, 42, p2), and the trajectories
could be visualized by plotting the pair (g;, p1) versus (g, p2), in a four-
dimensional space. The projection of an example trajectory onto two
dimensions is depicted in Fig. 4.2. Note that there we draw the trajectory
as a closed curve: often the possible trajectories recur, as for example

p(Y)

q1)

FIGURE 4.1 Trajectory in phase space for one particle.

87

88

4 Statistical Mechanics and Thermodynamics

(gp),

-
(q,p),

FIGURE 4.2 Trajectory in a two-particle phase space.

in periodic motion. The phase space, then, is a finite volume of points
(if time is discretized, of course) that describes all possible states and all
possible motions of the system. In general, the phase space for N particles
is extremely high-dimensional, yet it is often imagined as a cloud of points
(where each point represents one possible state of the system) and where
the density is proportional to the system'’s probability to occupy this state
(see Fig. 4.3).

Let us examine a small piece of this volume, Ag Ap, at location g, p. In
essence, we are examining all those possible configurations of the system
for which the positions are between g and q + Ag, and the momenta
between p and p + Ap. Clearly, if the system is evolving in time, it will
spend only a small amount of time in this little box. Let us define then
the time At that it spends in this region if we observe the system for
a very long time, T. In this case, we can say that the probability w for
that system to be in a state with coordinates between g and g + Aq, and

momenta between p and p + Ap, is
. At
w= lim —. (4.2)
T—soo T

Now we can take the limit to infinitesimal box sizes, and write for the
volume element of each box,

dqdp = dg,,...,dqndp, ..., dpn (4.3)
where we make explicit the fact that this volume element has very many
dimensions, and write for the infinitesimal probability

dw = p(q,...,qn,p1,.--,pN)dqdp . (4.4)

According to this formula, the probability dw to find the system in a state
with coordinates between q and q + dg, and momenta between p and

90

4 Statistical Mechanics and Thermodynamics

4.2 Averages, Ergodicity, and the
Ergodic Theorem

Now let us turn to the advantages of having a statistical distribution func-
tion for a statistical system. For example, suppose we wish to know the
average of a certain physical quantity (such as the energy) that is a func-
tion of the coordinates and momenta, averaged over the many many
particles that make up our statistical system. Rather than measuring this
quantity for each particle in the system over time and averaging them,
it turns out that we only need to average over all possible states that the
system can take on, i.e., we need only to average over the statistical dis-
tribution function. Thus, the average for a quantity f(g, p) is denoted by
(f) and given by

m=mem@m@@, (4.6)

which can easily be obtained if we know the function p(g, p). Because of
the way we defined p, we could surmise that {f) could just as well have
been obtained by averaging f(q, p) over time:

1 T
(h = Jim = [flac, poya:. (47)

However, this is not always the case. Imagine that there is a region of
phase space that cannot be accessed from every initial condition (maybe
because there is a barrier of some sort blocking the development into
that region). Then, the two averages (4.6) and (4.7) are not equal, and
the system is called nonergodic. Thus, ergodicity is a property of systems
whose statistical distribution function is traced out by a single trajectory.
More mathematically, we can say that a system is ergodic if the trajectory
of the system in phase space, observed at small enough time interval At,
approaches the statistical distribution p(g, p) arbitrarily well as T — o0.
The idea of ergodicity will become very important when we consider the
phase space of living systems: genotype space. Such a space was first in-
troduced by Maynard Smith (1970) in the guise of a protein space. The idea
is that all sequences can be assigned a point in a high-dimensional lattice,
where neighboring sequences differ only at one position. Even though we
may think that all possible genomes can be obtained by mutations from
any other genome (ergodicity of genotype space), this is so only theoret-
ically (see Box 4.1). Practically, such a process would take much longer
than many many ages of our universe; thus such systems are practically

4.3 Thermodynamical Equilibrium, Relaxation

1f we assume that evolution is a random process (random walk) in genetic

~ space, is there a chance that the entire volume (all possible genomes) is
sampled over the age of the universe? To answer this question, let us
conduct a thought experiment and imagine that the DNA strings consist
of 10° nucleotides. If we assume a replication rate of one nucleotide per
second [Eigen, 1985, it follows that only about 10°° configurations can be
sampled by all such genomes in parallel, during the age of the universe.
On the other hand, for strings of length 10°, there ‘are 4'® possible ar-
rangements, far outnumbering the number that can be tried (no matter
what replication rate we assume). Thus, the process of evolution is highly
nonergodic, and it can be said that only a negligible fraction of genetic
space will ever be explored. Also, this means that an area in genetic space
that has been abandoned (via extinction) will, with all probability, never
be visited again. As a consequence, a statistical treatment of evolution
can never make any predictions as far as the global outcome of the evo-
lutionary process is concerned (e.g., What is the most probable genome
after 4 billion years?). Still, the statistical method can be applied to the
subsystems, i.e., small populations. We can thus imagine the evolutionary
process as guiding many independent clouds of points through the vast
genetic space, each cloud never dissipating enough to cover any signifi-
cant amount of that space, but sometimes splitting never to merge again
(the process of speciation). On small time-scales, the clouds seem to drift
aimlessly around (performing a Gaussian random walk), while on large
time-scales one can observe a jumpy behavior that is related to sudden
bursts of invention. This phenomenon will be highlighted throughout the
book from several different perspectives.

BOX 4.1 Ergodicity in Genetic Space?

nonergodic. Clearly, in nonergodic systems the history of the system is
important, and the state of the system at any time will usually depend on
this history. We will learn more about this and its consequences later. In
the meantime, let us investigate the important concept of statistical and
thermodynamical equilibrium.

4.3 Thermodynamical Equilibrium,
Relaxation

From the previous discussion it is apparent that predictions obtained
with the statistical distribution function are probabilistic in character, un-

91

92

4 Statistical Mechanics and Thermodynamics

like the deterministic laws we are used to from classical mechanics. This
is because we are interested in making predictions about the macroscopic
behavior of a large number of units using only a limited amount of infor-
mation. In this statistical treatment, the probabilistic nature of the laws
we derive, however, is hardly noticeable: the macroscopic body will take
on the most probable value with close to certainty.

Using the statistical distribution function p(q, p), we can construct a
probability distribution function for the quantity f(g, p) that will tell us
which of the values f is the most probable, as a function of the state
(g, p). This distribution function turns out to be very strongly peaked
around the average value (f), which is a consequence of the law of large
numbers (or central limit theorem). In essence, the law of large num-
bers guarantees that the sum of a large number of independent random
variables approaches a peaked, Gaussian, distribution. It is instructive to
see this law at work by summing, for example, the output of a random
number generator. Even though each number is identically distributed
(the probability to obtain a number between 0 and 1 is the same), the
sum of these random numbers converges toward a Gaussian distribution
peaked at % Indeed, the fact that the probability distribution functions
of physical variables become so very strongly peaked (“delta-function-
like”) around their average value for large systems is really the reason
why the statistical description is so accurate. Also, the deviations from
this average (fluctuations) become exceedingly small in this limit:

A(f)=(fH—(fH2~107". (4.8)

Using this concept, and the concept of a subsystem, we can define what
it means for a system to be in equilibrium. The general idea will be that
a system is in equilibrium if in every one of its subsystems (an arbitrary
contiguous piece of the full system), the mean value for its physical quan-
tities is close to the mean value of these quantities for the whole system.
The whole system is then said to be in thermodynamical equilibrium. Note
that this does not hold for all possible measurable quantities. As stated
earlier, we have to be able to assume that the contribution to the overall
average from each subsystem is independent, and the variables we observe
must be additive (i.e., the value of the observable for a combined system
is just the sum of the variables in each of the systems). For this to be the
case, the system may have to be observed for a sufficient amount of time
so that the influence of any starting condition or the weak interaction

4.4 Energy

between subsystems has had a chance to die out. This time is usually
different for every system, and depends on the nature of the interactions.
For each statistical system, there should therefore exist a characteristic
relaxation time that determines how long it takes for a system to return to
equilibrium after it has been perturbed.

The concepts of thermodynamical equilibrium and relaxation will
also become important for our simple living systems, where we might
ask, for example, whether the fitness of a subpopulation is the same as
the average fitness of the whole population. We expect this to be the case
after the system has equilibrated for a time longer than its relaxation time
7. Conversely, for systems that are always off-equilibrium, the relaxation
time diverges, i.e., tends toward infinity. We shall find that if a (genetic)
system is small enough, the time between perturbations can be smaller
than the time it takes to equilibrate. Perturbations are usually introduced
into the population as mutations that generate fitter genotypes. However,
since the relaxation time in livings systems appears to increase dramat-
ically as the population grows larger, large enough genetic systems tend
to be off-equilibrium most of the time.

4.4 Energy

Let us now ask the question of whether we can find a functional form for
the statistical distribution function, something that would clearly turn out
to be very useful. In order to answer this question, let us state a general
theorem (without proof) that will be of even more use later. Liouville’s
Theorem states that, if the statistical distribution function is a function of
observables (measurable physical attributes that are functions of g and p),
then each of these observables must be invariants, i.e., quantities that
must be conserved under time evolution. For the simple systems that
we are considering here (particles at rest without angular momentum),
there is in fact only one such invariant: the energy. As a consequence of
Liouville’s Theorem, we may write down the following formula for the
statistical distribution function:

log p(q,p) = a + BE(q, p), (4.9)

where E(q,p) is the energy of the state described by (g, p). Note that
strictly speaking, for Liouville’s Theorem to hold, one must guarantee

93

94

4 Statistical Mechanics and Thermodynamics

that there is indeed a function (called the Hamiltonian) with certain char-
acteristics (such as positivity), which guarantees the evaluation of the
energy in the first place. Also note that in general, a system has a Hamil-
tonian only if its energy can be determined entirely from the degrees of
freedom (here g and p) of the system. While this is always the case for
the statistical mechanical systems we are considering here, this must be
ascertained before we can extend such a theorem to the genetic realm.
The logarithm of the distribution function arises because p is obtained
from its subsystems by taking products: if subsystem 1 has distribution
function p; and subsystem 2 has distribution function p;, the statistical
distribution function of the combined system is given by the product

P12 = PPz, (4.10)

such that log p;, = log p| + log p,. If a subsystem is described by E; or E;,
we see that

1ng12 ~ B(E; + E,) . (4.11)

Equation (4.9) will then allow us to calculate the statistical distribution
function if the energy, as well as parameters a and B, are known. What
these are will become clear in subsequent sections. We now turn to the
important concept of entropy.

4.5 Entropy

Entropy is a measure of the disorder present in a system, or alternatively,
a measure of our lack of knowledge about this system. Such a measure
was introduced in the previous chapter for random variables, and the
same measure is defined here for physical systems. At first sight, entropy
seems like an odd definition in physics, as it seems to imply that it
depends on the state of an observer. As we shall see, this is not the
case. The general definition of entropy is such that if no knowledge is
specified, the entropy, or disorder of a system, is always maximal, i.e., itis
obtained by assuming that the system is in a superposition of all possible
states with equal probability for each. In comparison, if an observer has
some knowledge about the state of the system, for example, that it can
only be found in two of its possible N states, the entropy (which is now

4.5 Entropy

conditional on the knowledge of the observer) is much smaller, much in
the manner discussed in Chapter 3. Of course conditional entropies are
not independent of the system to which they are coupled (typically an
observer).

Let us estimate the number of states that a system can be in, in order
to get a handle on such a measure. For this, let us return to our small
piece of phase space volume AgAp introduced in Section 4.1. Indeed, the
number of states in this little box is proportidnal to the probability w [see

In our quest to treat genetic strings with the methods of statistical physics,
let us attempt to define the equivalent of an encrgy variable for strings.
The most important feature of the strings we are considering here is,
of course, that they can self-replicate. Each string is uniquely identified
by its genotype, the specific sequence of instructions. The genotype then
plays the role of the coordinates and momenta in our general discussion,
and the space of all genotypes is the equivalent of phase space. For each
genotype i, let us define its replication rate ¢;, which measures number of
offspring per unit time, and thus has dimensions of inverse time. A string
that takes a long time to replicate has a small replication rate, while a fast-
replicating string has a large replication rate. Clearly, in an interacting
population whose total number is kept constant, the genotypes with the
highest replication rate will survive, while the inferior ones will suffer
extinction. Let us then, for each genotype, define a measure of inferiority
I;, which depends on the string's own replication rate ¢;, and the current
highest replication rate €peg:

I;i = €pest — €i - (4'12)

In the absence of mutations, the population will always tend towards
a state of zero average inferiority, while with mutations present it will
simply attempt to minimize the average inferiority. Thus, the inferior-
ity seems to be the analogue of energy in these string systems. For an
arbitrary string, I = 0 then denotes the ground state, while when hit
by a mutation, the string will be left in a state with higher inferiority,
only to be replaced by a (faster-replicating) string with lower inferiority
subsequently —the analogue of decaying from an excited state to a lower
energy state. Sometimes, we shall encounter replication rates that rise
exponentially with fitness. In such cases, we shall define the inferiority
as I} = log €pest — loge;. (continues)

BOX 4.2 Energy for Genetic Strings

95

96

4 Statistical Mechanics and Thermodynamics

Note that the inferiority is defined with respect to a global constant (the
replication rate of the best string), and in a sudden event where a new
best string is discovered can change discontinuously. As we shall see later
(see Box. 4.5), such a process can be described as a first-order phase tran-
sition. Even though we woyld be hard pressed to write down a function
I(i) that takes a genotype as an argument and returns its inferiority (this
would be the analogue of a Hamiltonian), we can still be confident that
such a function exists in principle, as long as the inferiority of a string
depends only on its own genotype and the other genotypes in the popu-
lation. Under such circumstances, such a fitness landscape might allow
us to define a dynamic for the genotypes that involves the minimiza-
tion of a Lyapunov function (here, the energy function), a cornerstone
of any statistical treatment of many bodies. Consequently, an analogue
of Liouville’s Theorem might hold (at least in between large transitions),
and it should be possible to write a statistical distribution function for
genotypes that depends on the inferiority.

BOX 4.2 (continued)

Eq. (4.2)] that this box is visited by a trajectory traced out by the system.
Thus, the number of states AT is
AgA

AT = % , (4.13)
where k is a normalization factor that we shall encounter later. Clearly,
the more states in a box, or cell, the higher its statistical weight AT. The
entropy of some subsystem described by a phase space cell AgAp is then
defined simply as the logarithm of its statistical weight:

S=log ATl . (4.14)

As is obvious from definition (4.13), the entropy is only defined up to
a constant, a matter that does not need to worry us now. Roughly, the
entropy is defined as the number of different states in which the system
can possibly exist. If an observer gains knowledge about the system and
thus determines that a number of states that were previously deemed
probable are in fact unlikely, the entropy of the system (which now has
turned into a conditional entropy), is lowered, simply because the number

4.5 Entropy

of different possible states is then lower. (Note that such a change in
uncertainty is usually due to a measurement).

Clearly, the entropy can also depend on what we consider “different”
For example, one may count states as different that differ by, at most,

Ax in some observable x (for example, the color of a ball drawn from -

an ensemble of differently shaded balls in an urn). Such entropies are
then called fine-grained (if Ax is small), or coarse-grained (if Ax is large)
entropies. The difference in entropies depending on whether or not one
knows the distribution of objects or particles in an ensemble, is exempli-
fied in Box 4.3 for genetic systems. In the following, we try to find the
entropy (given the distribution function) for general systems.

Let us then divide our system again into n subsystems, each being
characterized by its total energy E,. We saw in Section 4.4 that the sta-
tistical distribution function for each subsystem w,(q,p) can only be
a function of the energy, because it must be a function of conserved
quantities, and the energy is the only one available to us. Thus,

logw, = a + BE, . (4.15)

Because of the linearity of this expression, we find for the superposition
of the n systems:

log w({E)) = & + B(E) = (log w(E;)) . (4.16)
Since the number of states in the combined system is just oz, the
entropy is
1
S=log ATl =1o = —(logw;) . 4.17
8 & oUE) — oswi) (4.17)

The last average can be rewritten using the probability to be in subsystem
i, w;, as

n
S=-) wilogw;. (4.18)

(See also Exercise 4.1.) Note that the former analysis also entails that if
we can define the entropy of a subsystem S,, then the total entropy of
the system is given by the sum

S=)8,. (4.19)

97

98

4 Statistical Mechanics and Thermodynamics

Quantities for which such an additive law holds are called extensive. We
encountered another extensive quantity earlier: the energy. An exam-
ple of a nonextensive (or intensive) quantity is pressure: the combined
pressure of two systems at equilibrium, each with pressure P, also has
pressure P rather than 2P.

Let us define the entropy of a population in genetic space. Assume that
the genetic phase-space is spanned by sequences of instructions that
are numbered i = 1,..., Ny, where N, is the total number of different
sequences in the population. If sequences are of length ¢ instructions
(say), and each instruction can take on D values (D = 4 for DNA), the total
number of different strings is D*. However, since the process of evolution
is highly nonergodic, it is not useful to consider this vast space. Rather,
let us consider the space that is currently occupied by the population of
N strings, where N > N,, of course. The volume of that corner in phase
space is just the number of different strings (genotypes) in existence now,
thus

AT =N, . (4.20)
The entropy of the population is then

S=1logN, . (4.21)
If we have somewhat more knowledge about the population, this entropy
can be smaller. Specifically, imagine that we were in possession of the
knowledge of how many of each genotype i there are in the popula-
tion. If n; denotes the abundance of genotype i in the population, with

Zf‘" n; = N, we can define the genotype distribution function p; = n;/N,
and the entropy

N?
S=-— Z pilog pi . (4.22)
i=1

Clearly, if this distribution is not known, we have to assume that all
genotypes are present with the same probability po; = 1/N,. In that case,
Eqg. (4.22) reverts to (4.21).

BOX 4.3 Entropy in Genetic Space

4.6 Second Law of Thermodynamics

4.6 Second Law of Thermodynamics

Let us now formulate one of the most fundamental observations of ther-
modynamics: the second law. While the first law generalizes the law of
conservation of energy to include the possibility that energy is trans-
formed to heat, the second law characterizes the manner in which a
system approaches thermodynamic equilibrium.

If a system is away from thermodynamical equilibrium, it has an
improbable statistical distribution, and will move towards a more probable
state. This increase in probability happens very fast, in fact, exponentially
fast, since from the above equations we can see that the change in the
statistical distribution function is exponential in the entropy:

dw ~ €° . (4.23)

This also shows that, if in time the system moves from a less probable state
to a more probable state, the entropy S has to increase. Generally, the law
of increase of entropy can be formulated as follows: “If a closed system is
in 2 macroscopic non-equilibrium state, the most probable change of the
system will be towards higher entropy” Note that the words “most proba-
ble change” mean that, because of the large number of particles involved,
the opposite would happen only with a probability smaller than anything
that can possibly be observed, i.e., an astronomically small probability.
Thus, for practical matters, we can formulate: “If at any time the entropy
of a closed system is not equal to its maximal value, it will subsequently
not decrease, but rather will stay constant or increase” Note also that
processes for which the entropy stays constant are called reversible, while
those for which the entropy increases are naturally termed irreversible.
In classical physics, the term isolated system can be translated to ther-
mally isolated, while this is not true in quantum mechanics, for example.
Thus, the second law only holds for classical systems that are not in
thermal contact with any other system. Such thermal interactions allow
a decrease in entropy for a system, for example, by putting the system
in question into contact with another one at a lower temperature. The
ensuing thermal equilibration will lower the entropy of the system at a
higher temperature, while increasing the entropy of the system at the
lower temperature. For the combined system, though, the total entropy
stays constant. Likewise, any kind of measurement performed on a system
is excluded by the term “isolated” Thus, we can say that the second law

99

100

4 Statistical Mechanics and Thermodynamics

is a statement about what can and cannot happen to a system if it is left
completely alone.

4.7 Temperature

In general, the statistical distribution function is not enough to completely
describe a macroscopic body, as more thermodynamical variables than
just the energy are needed for that. Let us then start here with defining
temperature.

The temperature of a thermodynamical system with entropy S, and
energy E, is defined as the inverse rate of change of the entropy with
energy:

1 ds,

T dE,’
To have a better understanding of this definition, let us consider two
systems n = 1 and n = 2 in thermal contact with each other. Then we
can write down the total energy and the total entropy:

E=E, +E,, (4.25)

§=8+S;. (4.26)

To find out the temperature of the combined system, consider
as _ ds, ds, ds, ds,dE,

(4.24)

S B Tt A S St . 4.27
dE, dE, dE, dE, dE,;dE, 427)
But since E; = E — E,, dE,/dE, = —1, and
as as, ds,
= (4.28)

i, ~ dE, dE
Now assume that the system is in statistical equilibrium. Then S takes on
its maximal value, and

a_4a _, (4.29)
dE dE, ' '
and therefore
as; ds;
5 = & (4.30)
or
1 1
- == . (4.31)

4.7 Temperature

Having determined several statistical concepts for self-replicating strings
that are analogous to classical thermodynamics, let us try to find the
analogue of temperature. We suspect immediately from our previous
considerations that the mutation rate will fill this place. Indeed, it is
temperature that drives statistical systems towards higher entropy and
equilibration, and mutation provides just this role in our genetic sys-
tems. Imagine, then, that our strings are subjected, in a Poisson-random
manner, to mutations that replace instructions randomly by a different
instruction from the set. In natural DNA or RNA systems, this is the re-
placement of a nucleic acid by one of the four possible ones. In general,
there is another source of mutations unrelated to these cosmic-ray-type
of mutations due to errors in the copy process. For the discussion here,
they can simply be lumped together (although they play different roles
in general). Thus, let us define a mean rate of mutational changes per site
of a string, R, such that the probability for a string of length ¢ to be hit by
a mutation is

p@)=1-(1-R)". (4.32)

For copy mutations, an analysis of error thresholds (see Chapter 11)
yields that

log épest — log (€) = RE, (4.33)

where the replication rate € is related to the one previously introduced
by € ~ 1 + €. According to Eq. (4.12), the left-hand side of (4.33) is just
the average inferiority, and we can then deduce that

(I ~ Re. (4.34)

With the interpretation that I is the analogue of energy and R¢ the ana-
logue of temperature, Eq. (4.34) is just the analogue of the Equipartition
Theorem of thermodynamics (see, e.g., Landau and Lifshitz, 1980).

BOX 4.4 Mutation Is Temperature

We are therefore able to say that if two systems are in thermal contact
and in equilibrium, their temperatures must be equal. Since this way of
reasoning can be generalized to any number of systems, we may conclude
that the temperature of equilibrated systems in thermal contact with each other
is equal.

101

102

4 Statistical Mechanics and Thermodynamics

4.8 The Gibbs Distribution

We have seen in previous sections that the total energy E, is sufficient
to describe the statistical distribution function of subsystem n, say, given
certain parameters a and B:

logp, =a+ BE, . (4.35)
Inserting this into the formula for the entropy (4.17), we can write
S, = —(log pp) = —(loga + BE,) (4.36)

and therefore identify one of the parameters (B) as related to the
temperature, since [compare Eq. (4.24)]

ds, 1

=P (4.37)

In the following we shall try to identify the meaning of the constant a
in expression (4.35), so that we can write down a general distribution
function for statistical systems armed with only the knowledge of the
energy. This very general form of the statistical distribution function is
known as the Gibbs distribution. Even though we have omitted proofs
for most of the equations that we have presented in this chapter, it is
instructive to observe how this distribution can be derived.

Suppose we deal with a large system composed of many subsystems
(an ensemble). Let each of the subsystems have n possible states, with
energy E,. (These are, then, systems with discrete energies, as is usual
in quantum mechanics, for example.) Pick out one of these subsystems,
and we may ask what the probability is to observe that system in state
n with energy E, (while averaging over all the other subsystems). The
distribution function of the entire system is, as we determined earlier,
just a product of the distribution functions of the subsystems

po =[], (4.38)
a

and the energy of the combined system is just the sum of the energies of
the subsystems

Ey=) E,. (4.39)

4.8 The Gibbs Distribution

On the other hand, the energy of each subsystem is an average of the
energies that each state can take on:

Ea=)_ paE®, (4.40)
n

where we sum over all N states of the subsystem, and pj, is the probability

to be in state n. We know from an earlier discussion (see Section 4.3) that,
in equilibrium, the distribution function (as a function of the total energy)
is strongly peaked around Ej:

p(E) ~ 8(E — Eo) , (4.41)

where the function 8(x — xy) is a mathematical shorthand for a function
that is infinitely large at x, and zero everywhere else, but in such a way
that the integral of 8(x — x) over x is finite. We are interested in the
distribution of energies in one particular system. Then let us divide the
total energy E; into the energy of our subsystem, E,,, and the rest, with
energy E':

Ec=E +E,. (4.42)

Let dI'" be the number of states in the remaining system with energies
between E’ and E' + dE', so that

dp(E,) ~ 8(E' + E,, — Ep)dI, (4.43)
and as a consequence
O(Epn) ~ f 8(E'+ E, — Eo)dI' . (4.44)

The number of states dI"”’ can be expressed in terms of the entropy of the
primed system [see Eq. (4.14), with dI"/dE = AT'/AE]:

dr’ ~ ¢° d’, (4.45)
such that
pEn) ~ [+ En+ Eo) e dE
~ BB (4.46)
In the last line we made use of the definition of the delta function:

/: fl®) 8(x — x0) dx = flxo) , (4.47)

103

104

4 Statistical Mechanics and Thermodynamics

which holds for “reasonable” functions f(x). Continuing with Eq. (4.46),
let us expand the entropy S(Eq — E,) around E,:

S(Eo — En) = S(Eo) — E % +0 #s)
0 n) — 0 n oE E-E, 9E2
. Ejn
~ S(Ep) — T (4.48)

wherc we have made use of the definition of temperature in the last
line. Inserting this into (4.46), we obtain for the distribution function of
energies in the system we picked,

p(En) ~ exp [S(Eo) - E—Tf] =Ae BT (4.49)

which is the Gibbs distribution. The constant A, which we see determines
the coefficient o that we defined in Eq. (4.35), is thus related to the
entropy of the entire system, but can also be tied to properties of just the
system under investigation. Indeed, since p(E,) must be normalized,

Y pE)=1, (4.50)
we find
1

Averages in each subsystem can now be written in terms of this quantity,
and the corresponding averages are called Gibbs-averages:

I

(=) pufu= (4.52)

4.9 Nonequilibrium Thermodynamics

At this point the reader may ask whether it is possible to define the
entropy of a system that is not in equilibrium, and whether the second
law may be violated in such situations. Such an extension can be achieved
borrowing some results of Information Theory (the subject of Chapter 3).
The second law does not hold then, of course. However, one can show
that the total entropy is still a conserved quantity, even off of equilibrium.

4.9 Nonequilibrium Thermodynamics

As we shall see later, living systems are notorious for very effectively
staying away from the equilibriumn regime. Quite obviously, this is of
prime importance if specific patterns that represent information are to
be conserved in time.

Let us start by wondering how it can be that the entropy of a system,
in the complete absence of any knowledge (and at equilibrium) is maxi-
mal (the logarithm of the number of states), while it can be smaller if we
write it in terms of a probability distribution function p; = Z~'e~&/T, for
example, where Z is a normalization constant (the “partition function”).
The difference is that such Gibbs probabilities are, in fact, conditional prob-
abilities. The probability p; written above is the probability to be in state
i, given (while knowing) that the state has energy E;. The corresponding
entropy

§=— Zp,- log pi (4.53)

can, as a consequence, be lower than maximal, by an amount that reflects
our knowledge about the system:

AS=1log Al —-S§. (4.54)

Note that this quantity is often written without the constant first term
log AT, and termed negentropy. The latter, i.e., —S, plays no special role
in physics. Still, the second law applies to S as well as to log AT". As we
have seen in the previous chapter, this entropy difference is not, strictly
speaking, information (it is not a mutual entropy). However, the average
AS, averaged over all possible systems with all possible energy distribu-
tions, is. Thanks to the concept of conditional probabilities, we are now
in a position to specify entropies of systems away from equilibrium, if we
know what kind of constraints are put on the probabilities. An example
is the thermodynamics of measurement. This is a very general nonequi-
librium situation, as entropies are reduced in the process of measurement
since knowledge is acquired. In reality, all that happens in a measure-
ment is that the probabilities that we use to compute the entropy, the p;,
change because we learn more about the system. For example, if we start
out with probability

PaE., (4.55)

the probability to be in state i, given its energy E; (that's what the bar after
the i means), then after making measurements j, k, and /, for example,

105

106

4 Statistical Mechanics and Thermodynamics

the probability becomes

PiE.GkD - - (4.56)

For example, suppose that in a measurement we are able to obtain the
position and momentum of each and every particle in a box. Before the
measurement, let the system have entropy

1 g 1 _g (E)

After the measurement, the conditional probabilities have changed in
such a manner that the p;. . represent a peaked distribution (where the ...
after the horizontal bar denote all the outcomes of the measurements):
all the p;, . are zero except one. Then, the entropy

$@i.) = =)_pi.. 1ogp.. (4.58)

must be zero. However, entropy is still conserved, because Bayes' Theo-
rem (see Chapter 3) tells us that the entropy S is split in the following
manner:

So=8+1I, (4.59)

where I is the entropy of correlation (mutual entropy) and S is entropy of
the system given the particular measurement outcomes: a conditional en-
tropy. If we denote with p(...) the probability to obtain the measurement
outcomes (...), then

I==) p(..)logp(...). (4.60)

Thus, entropy is conserved, even though the measurement operation was
not an equilibrium process. Note that if we let the system evolve freely af-
ter the measurement, the entropy of correlation I will rapidly decrease, in
fact exponentially fast. It is this quantity that decreases in the approach to
equilibrium, whereas S approaches S, exponentially fast, according to the
second law. Thus, we realize that in equilibrium thermodynamics, all cor-
relation entropies vanish, and all conditional entropies are maximal, i.e.,
they are regular thermodynamical entropies. Away from equilibrium, we
must use conditional probabilities and worry about correlations induced
by the nonequilibrinm processes.

4.10 First-Order Phase Transitions

4,10 First-Order Phase Transitions

One of the most recognizable aspects of evolving and adapting systems
are the periods of extinction and innovation, collectively known as eyo-
lutionary transitions. While the period between such transitions can be
described by the techniques of equilibrium thermodynamics, the transi-
tions are decidedly nonequilibrium phenomena. As we shall see, those are
best described in the context of first-order phase transitions.

The state of any homogeneous body in thermodynamical equilibrium
is determined by the specification of any two thermodynamic variables.
Examples for such pairs are the temperature and pressure, the tempera-
ture and volume, or the energy and the chemical potential. The chemical
potential u is a quantity that measures the rate of change of the energy
with the number of particles (while keeping the entropy and the volume
constant—this is indicated by the subscripts):

.- (2) s

On the other hand, specifying two of these variables does not guarantee
the existence of a homogeneous body with these parameters in thermo-
dynamic equilibrium. Rather, such a state could in principle separate into
two phases that are each described by different pairs.

Different phases of a system can coexist under very special circum-
stances, namely

T'=T; equality of temperatures (4.62)
P, =P, equality of pressures (4.63)
W = iy equality of chemical potentials (4.649)

It is impossible for two phases to be in equilibrium at any possible pair of
temperature and pressure. Rather, specifying one determines the other.
On a diagram of any two thermodynamic variables, then, the phase
boundary can be drawn as a line, as in Fig. 4.4. At any point on the
line in Fig. 4.4, the two phases can coexist. If the parameters are tuned
in such a way that the system's state point is off the line (while still two
phases are present), a phase transition will take place that will result in the
system to be in one homogeneous phase. When this happens, a certain
amount of heat is produced or absorbed by each subsystem. This can be
thought of as the energy necessary to melt a crystal or evaporate a liquid,

107

108

4 Statistical Mechanics and Thermodynamics

A

T I

II

FIGURE 4.4 Phase diagram for two different phases I and II.

or, in the reverse direction, the amount of heat liberated when steam
condenses or a liquid solidifies. In general, this amount of heat (per unit)
is called the transition heat, or latent heat.

When a system undergoes a phase transition from phase 1 to phase 2,
often the entropies of the two phases are different. (They certainly are in
the examples mentioned above!) Such transitions are termed first-order.
In transitions of second order the entropy is continuous. For first-order
transitions, let us then define the latent heat as

S,
L= TdsS, (4.65)
S

where we integrate over the entropy from its initial value S, to its final
value S,. Then, we find

L="T(S; - 8)=TAS. (4.66)

The time it takes to go from one phase into the other is usually related to
the relaxation time of the system.

Phase transitions of this kind seem to occur in many systems that have
metastable states, and where each metastable state defines a phase. An
analysis of evolutionary transitions in terms of the language of first-order
phase transitions can be found in Box 4.5.

In our string systems, a phase is characterized by a global variable, the
replication rate of the best string, epest- A mutation that introduces a better
string renormalizes the inferiority (the equivalent of energy, see Box 4.2)
of every string in the population. If

€W = 24 + Ac, (4.67)

a string that was previously in the ground state (I; = 0) suddenly finds
itself in an excited state: I — I + Ae. In the language of first-order phase
transitions, this is due to the discovery of a new vacuum, and a phase
transition with latent heat L = Ae has to occur (see Fig. 4.5). The moment
the new epes, is discovered, the old vacuum defined by I = 0 becomes
a false vacuum, and therefore metastable. The new phase has a lower
entropy, and the difference in entropy between the old phase and the
new one is given by

AS (4.68)
We can check this explicitly in artificial genetic systems such as avida. In
Fig. 4.6, we can see a transition triggered by a self-replicating program
that discovered how to perform a type of logical operation on inputs (see
Section 9.3 for more details), thereby increasing its replication rate by
an amount of Ae, indicated in the figure. As a consequence, the average
inferiority (energy) of the population suddenly changes by an amount
Ae¢, ushering in the phase transition. During the transition, the latent
heat Ae has to be dissipated. This has happened once the new genotype
has wiped out all the inferior ones, and the energy in the lower part of
Figure 4.6 has returned to its starting value. Note that in equilibrium, this
value is determined by the mutation probability, as discussed in Box 4.2.

)
E

Eold= 0

o | of | e

FIGURE 4.5 Phase transition engendered by the discovery of a new
vacuum.

BOX 4.5 First-Order Transitions in Genetic Systems

109

110 4 Stadstical Mechanics and Thermodynamics

1.2 T T T T T

Energy

1 1 1 1 1

3600 3800 4000 4200 4400
t

FIGURE 4.6 Phase transition in avida (triggered by the discovery of A or B
in Fig. 9.3). The entropy drops for as long as it takes to dissipate the latent heat
(lower panel). After that, the entropy slowly starts to rise again as mutations of
the new best program start to reinstate diversity. In the upper panel the abrupt
change of the average inferiority (Energy) (I} = logencs: — log(e) reflects the
discovery of a new best string. Note that in avida experiments, we designate
by enes the replication rate of the most abundant member, rather than the
overall highest, as the former is easier to measure. They are usually equal in
equlibrium, but differ just after the transition takes place. As a consequence,
the measured energy dips below the average value right at the beginning of the
transition for as long as the new best replicator is not also the most abundant.

Problems

4.11 Overview

The methods of statistical mechanics and thermodynamics are singularly
well-suited to investigate the macroscopic properties of an aggregation of
very many units interacting by simple laws. In the usual description of
this theory, it is assumed that the system is ergodic, meaning that all pos-
sible states of the system can and will be taken on eventually. As a result,
the dynamics of such systems do not depend on the initial state. Living
systems can, to a certain extent, also be described by the methods of statis-
tical physics, albeit minus the ergodicity assumption. As a consequence,
we must bow to the principle of contingency: Everything we observe
in living systems will necessarily depend, more or less strongly, on the
ancestral genotype giving rise to all life on this planet. Furthermore,
the evolution of a population is an intrinsically nonequilibrium process,
except for the times between discoveries. These periods can, if the pop-
ulation is uniform enough such that its members can be considered the
same species, approximately be described by equilibrium dynamics. To
describe the monumental upheavals that occur during the major evolu-
tionary transitions, the language of first-order phase transitions seems to
be well-suited. Still, statistical theory will never be able to predict when a
transition is going to occur, nor what the emerging genotype is going to
be like.

Problems

4.1 Entropy in thermodynamic systerns can be viewed as the logarithm of
the total number of possible states in which a system can exist. Without
appealing to equilibrium, the formula (4.18) can be obtained using the
microcanonical ensemble. Suppose we have N systems that can be in
states 1,2, 3..., and that of these systems, N is in state 1, N; is in state 2,
etc., where N = N} + N; + N3 +- - -. Show that you can obtain the entropy
per system

S=-k) pilogp, (4.69)

where p; = N;/N, by writing S as k times the number of possible ways to
realize a given set of occupation numbers N;, Ny, - - - . In (4.69), k is Boltz-

111

112

4 Statistical Mechanics and Thermodynamics

4.2

mann's constant that converts temperatures into energies (we have set
this constant equal to one in the previous chapter). Hint: Use Sterling’s
formula log N!' ~ NlogN. .

Nernst’s Theorem (also known as the third law of thermodynamics) states
that the entropy of any physical system at absolute zero temperature is

S$(0) = klog M(Eq) (4.70)

where M(Ep) is the degeneracy of the ground state (i.e., the number
of different states that have the lowest energy). It is conjectured that in
physics the ground state is always non-degenerate, in which case S(0) = 0.
In avida, start a run with a mutation rate of your choice, and set an
event to change the mutation rate to zero at a time when you think
the population will be reasonably equilibrated. Watch the entropy of the
system approach (4.70) (with k = 1), and try to determine M(0) from the
limit t — oo. Consult the User's Manual in the Appendix about how to
change the mutation rate during a run.

CHAPTER FIVE

Complexity of Simple

Living Systems

The computing process [.. .] is closely akin to a measurement.
R. Landauer, 1961

That the complexity of life is a mystery as far as physics is concerned
has been articulated often and forcefully, most notably by Schrddinger
(1945). Today, however, we have reached a far better understanding of the
dynamics that give rise to the hitherto mysterious ordering process, and
we are ready to examine the evolution of complexity in living systems
armed only with the tools of thermodynamics and Information Theory.
The latter teaches us how to treat systems that are away from thermo-
dynamic equilibrium, a state of affairs important to the physics of living
systems.

While we are contemplating this matter, geneticists all over the world
are sequencing genomes (including our own) at an unprecedented pace,
and there remains little doubt that the complexity of living systems is
just a reflection of the information stored in the genome. How, exactly,
this conclusion can be made firm is the subject of this chapter. Artificial
living systems can help tremendously in understanding the mechanism
that allows information to be transferred from the environment into the
genome. Furthermore, they can help us in forging a measure of com-

113

114

5 Complexity of Simple Living Systems

plexity, a concept with a history of long debate. Apart from complexity
measures based on automata theory (which we will encounter in a few
pages), there are many others that will not be reviewed here; for an
introduction, see Badii and Peliti, 1997.

5.1 Complexity and Information

In the following, we are going to investigate the basic process that al-
lows the stochastic transfer of information from an environment into the
genome. In the end, the main agent in this transfer is Darwin'’s principle
of survival of the fittest. However, we abstract the mechanism down to
its simplest form, operating on self-replicating binary strings.

Imagine such a string self-replicating in an environment consisting
of other strings and physical principles that affect the manner in which
a particular string replicates (the chemistry). Also, imagine that there is
an agent of noise that induces errors (bit-flips) in the strings by either
or both of two mechanisms: a random bit-flip acting on a string (akin to
cosmic-ray mutations), or bit-flips resulting from the incorrect copying
of instructions in the self-replication process. Note that a self-replicating
string already contains quite an amount of information, namely the in-
formation necessary to self-replicate in its given environment. How such
information can enter a non-replicating string in the first place is the
subject of an entirely different discussion (the origin-of-life question),
touched upon in Chapter 2. We should reflect at this juncture already
about the fact that this information that allows the string to self-replicate
is context-dependent, rather than absolute. If the particular string were
placed into an environment with a different chemistry, it would most
likely cease to self-replicate. The arrangement of bits that was so powerful
in one environment can be quite meaningless in another: what is in-
formation given the chemistry the string evolved in, is just randomness
given a foreign one. This will be our guiding principle in examining com-
plexity and its relation to information: information is context-dependent.
Of course the theory we are going to use to make this explicit is Informa-
tion Theory, as outlined in Chapter 3. Let us now follow the evolution of a
string in its native environment, and let us also assume that the environ-
ment is complex, i.e., that there are many things to be discovered, many
ways to improve your fitness. In short, let it be replete with potential
information.

5.1 Complexity and Information

The first observation we make is that it appears that the mutation prob-
ability (which is due to the noise) seems to be nonuniform across the bits
of the self-replicating string. If the population is examined post mortem,
i.e., its evolution interrupted, some positions (sites, loci) are highly vari-
able across the population, while others are strongly conserved. Is this a
reflection of a site-dependent mutation rate? We observe here that it is
not. Rather, bit positions that are essential for self-replication are imper-
vious to mutation owing to the simplest of all mechanisms: if they are
flipped, the bearer loses the capability to self-replicate and as a conse-
quence is incapable of promulgating the “tainted” code. Such a string will
be replaced quickly by one whose information was not corrupted, in a
sense reversing the lethal mutation. Bit positions that are inessential for
the continued self-replication of the string, on the other hand, will not
be corrected in this way, and such bits will take on all possible values
throughout the population as time goes on. Thus, the nonuniform rate of
substitution is just a reflection of important versus unimportant bits. In
the following, we call bits that are highly variable across the population
hot bits, while those that are strongly conserved will be termed cold. The
mutations of hot bits, correspondingly, are in general neutral mutations
(they do not affect the fitness of the bearer), while a mutation of a cold
bit is usually lethal.

Imagine now a random mutation that, by chance, actually increases
the rate of replication of the bearer. Such a mutation could have taken
place on a bit that was previously hot, which, however, together with
a mutation taking place somewhere else on the string, suddenly means
something. In other words, the string with these mutations makes better
use of the environment. Not only will this random mutation be passed
on to the offspring in this case (like any other neutral mutation is), but it
will be amplified in the population due to the superior replication rate of
its bearer. Thus, offspring of the string with the beneficial mutation will
increase in numbers relative to those strings that do not carry it, and in
due time (in a world that is of finite size), all strings will carry this allele,
i.e., this particular value of the bit. In other words, a position has reverted
from hot to cold; it has been frozen.

The simple fact that the adapted string is more successful means that
it is exploiting the environment in some manner. In order to do this, it
must contain information about the environment. Any time, then, that
a string becomes better adapted to the environment, we conclude that
information about the environment has been written into the genome by

115

116

5 Complexity of Simple Living Systems

the process just described: previously “blank” tape (sections of genome
with hot bits that can be mutated with impunity) are written over with
stable code: information. Note that this is a rather idealized picture: most
of the time positions in the genome are neither totally volatile nor com-
pletely fixed. Also, in the adaptive process positions that were previously
fixed can be overwritten with new code if the new information is at least
as successful in exploiting the environment as the previous was. We will
deal with the variable temperature of bits by considering the entropy of
the population later. For the moment, we are only interested in elucidat-
ing the main mechanism for information transfer from the environment
into the population. Information slowly and inexorably trickles into the
genome as the population takes advantage of more and more features of
the environment: the genomes become correlated to the environment. A
well-adapted string can then be viewed as a “book” about the environment
in which it evolved. By analogy, if we had the ability to decipher our own
genome accurately by inferring the function of each and every protein
and enzyme coded for in our DNA, we would be reading a book about the
environment in which we evolved: earth. This book would include such
simple things as chemical abundances, the temperature of the water and
air, the composition of the ecosystem on which we thrive, as well as any
other item relevant to the human metabolism.

Intuitively we surmise that life evolves towards higher and higher
complexity. Such a statement is rather empty if complexity is only loosely
defined. Here, we posit that life evolves in such a manner as to increase
the amount of information about its environment coded into the genome.
Also, we shall see that our intuitive notion of complexity in fact corre-
sponds to the notion of information in physics. In that sense, then, life
indeed evolves towards higher and higher complexity.

5.2 The Maxwell Demon

Using the concepts of Information Theory introduced earlier, let us quan-
tify what happens at the instant information enters the genome. In the
following, it will be useful to view this event as a measurement performed
by the genome on the environment. In a measurement, the correlation
between the measurement device and the measured system increases,
and the conditional entropy of the measured system and that of the

5.2 The Maxwell Demon

measured device decreases. Yet the measurement that the population per-
forms on the environment is not a purposeful act; rather, measurements
are performed spontaneously and randomly. Still, once information is
acquired in this spontaneous manner, it is not released just as sponta-
neously, but is used to lower the entropy of the population instead. This
is the prototype behavior of a Maxwell demon. Before describing such a
beast, let us consider in more detail the physics of measurement.

In the following, we denote the environment or measured system by
U, the “universe”. The total amount of information that can be accessed
by any measurement is then bounded by the entropy of the universe,
H(U). Entropy can thus be viewed as potential information. Let us also
think of the universe as an ensemble of random variables X;, correlated
in arbitrary ways. Typically, the experiment reveals the value of one or
more of the variables X; of U. After the measurement, the entropy of U
given X is all-important: it now becomes what is termed the remaining
entropy of U. Concurrently, information I(U : X) is gained. This process
is expressed in the fundamental equation, encountered before in the
chapter on Information Theory:

H(U) = HUIX) + I(U : X) . (5.1)

Remember from that chapter that information is a mutual entropy: it is
the amount of entropy shared between two systems. In the measurement
process the information gained is just a measure for the amount of cor-
relation between measured system and measurement device introduced
by the measurement, here between X and U. The measurement just de-
scribed is slightly awkward from the point of view of our usual experience
because the system performing the measurement (X) is part of the uni-
verse (see Fig. 5.1). Yet it is a useful example that teaches us that the
entropy of the closed (isolated) system H(U) does not decrease during
measurement. In our everyday experience, a system S is measured by a
device M that is not part of S, resulting in the correlation of some of M's
variables with S. In this case, some of the entropy of the measurement
device [H(M|S)] is not correlated with the measured system (Fig. 5.2), a
situation that we will encounter below. In both cases, however, we see
that information is a quantity that needs the specification of two ensem-
bles: what is being measured and by what. Thus, information is never
context-free: information is always information about something.

Let us now consider the consequences of the second law of thermo-
dynamics discussed in Chapter 4 more closely. As mentioned above, the

117

5.2 The Maxwell Demon

The inverse (nonequilibrium) process that confines all the molecules
in a corner of the box is a measurement, thereby creating information

and reducing the conditional entropy. We may therefore formulate an’

extended second law as follows:

If a closed system is in a macroscopic nonequilibrium or equilib-
rium state, the marginal entropy of the system is a constant.

The usual formulation (involving the increase of entropy) is sufficient
for most purposes, however, if we just keep in mind that conditional
entropies may decrease without violation of any law. The decrease in
entropy due to the measurement

AS = H(U) — HUUIX) (5.2)
for the measurement situation of Fig. 5.1, or
AS = H(S) — H(S|M) (5.3)

in Fig. 5.2 is just the information gained in the measurement. Let us
investigate whether it can be used to perform work, which would be an
indication that the second law is violated. This leads us to the Maxwell
demon paradox.

The Maxwell demon first appeared in Maxwell’s book Theory of Heat
[Maxwell, 1871]. There, he argued that a being armed only with the in-
telligence to make measurement decisions could change the pressure in
one side of a container that is divided into two halves (A and B, say) by
selectively opening and shutting a door connecting the two halves de-
pending on the speed of the molecules at the door (see Fig. 5.3). So, for
example, he could let fast molecules enter through the door from A to B,
while denying the same thing to slower molecules. Meanwhile, he would
allow slow molecules from B to enter A, but not fast ones. After a while, B
would be filled with fast molecules, while A is left with the slow ones. As
a consequence, this demon would have raised the temperature of B and
lowered that of A, without the expenditure of work (assuming that the
work necessary to operate the shutter is negligible), in violation of the sec-
ond law. Up until Landauer’s seminal work in 1961 and Bennett's in 1973,
attempts at revealing flaws in Maxwell's argumentation were centered on
showing that the measurement operation of operating the shutter by the
demon could not be performed without the expenditure of work (see Leff
and Rex, 1990, for a history and a thorough guide through the literature

119

120

5 Complexity of Simple Living Systems

S ™
!

AZ|{B

f

é «— .

!

Vo o
/

~e
‘\ ’;

\7 Y,
i

FIGURE 5.3 Maxwell's Demon at work (reprinted from Fundamentals of

Cybernetics, A.Y. Lerner, [Plenum Pub. Corp., NY, 1975), p. 257).

on the Maxwell demon). Landauer’s key realization was that informa-
tion was an object of physics, not an ethereal quantity. While Bennett
showed that the measurement process could be achieved without the ex-
penditure of work, Landauer showed that the acquired information could
not be stored without such expenditure. Before we discuss this in more
detail, let us illustrate how the realization that “information is physical”
[Landauer, 1991] saves the day for the second law.

For this purpose, let us illustrate the Maxwell demon paradox in its
simplest incarnation, the Szilard engine [Szilard, 1929). Imagine a single
molecule enclosed in a box that is in thermal contact with a heat bath at
temperature T (Fig. 5.4). A piston can be inserted into the box separating
it into two volumes. After determining on which side of the piston the
molecule is located (the measurement), the piston is moved in a direc-
tion determined by the outcome of the experiment, namely in such a
way that the kinetic pressure of the molecule assists the movement of
the piston. As this operation proceeds isothermally (i.e., so slowly that
all components remain in thermodynamical equilibrium), the reduction

122

5 Complexity of Simple Living Systems

$ vy

- T >
0 1 x

FIGURE 5.5 Landauer's double-well information storage device.

register (say, a zero) without knowing the state of the memory device
prior to the operation. We must then apply a force to the particle in the
well that will force it into the minimum x = 0 regardless of the initial state
of the device. This can only be done by applying a dissipative (noncon-
servative) force, which slowly drags the particle from x = 1 to x = 0 if
the initial state were x = 1, and otherwise leaves the state unchanged if
it were x = 0. Then, as Landauer showed, a restore-to-zero operation on
a binary memory device is necessarily associated with the dissipation of
an amount of heat equal to AQ = kT. This, it turns out, is exactly the
amount of work that can be performed by exploiting the gain of entropy
I = AS = k. Thus, no net energy can be gained by the measurement, and
the second law is inviolate.

This situation can be generalized as follows. A measurement involves
a system to be measured S and an observer (or measurement device) X.
The observer X is characterized by a recording device, which can be taken
to be a tape that records the binary values 0 and 1. If the tape is blank (all
zeros, say), the entropy of the observer vanishes (the state of the recording
device is perfectly known). Consequently, a reduction of entropy in the
measured system, having come into contact with a zero temperature device
(zero entropy implies zero temperature, according to Nernst's Theorem,
see Problem 4.2), does not violate the second law, because the entropy of

5.3 Kolmogorov Complexity

a system in thermodynamic equilibrium at temperature T that comes into
thermal contact with a system at a lower temperature naturally will lose
entropy until the two systems are at equilibrium (see Section 4.7). If the
observer's tape is in equilibrium on the contrary (random bits with equal
probabilities for a 0 or a 1), the recording of information is associated
with heat dissipation (the energy necessary to force a bit into a definite
state), and the drop in entropy AS is cancelled by the heat dissipated in
the recording of the information I. This is the content of the fundamental
equation of measurement, mentioned before but worth repeating,

AS = H(S) — H(S|IM) = I(S : M), 5.49)

illustrated by Fig. 5.2 and cemented by Landauer’s analysis of Szilard's
engine.

The importance of this observation for living systems and the evolu-
tion of complexity will be apparent in a short while. First, we need to dig
even deeper into the logic of the measurement process. This will lead us,
quite unexpectedly, back to the Turing machines introduced in Chapter 1.

5.3 Kolmogorov Complexity

As we have seen, there is no concept in thermodynamics that allows
a determination of the entropy of one string. Entropy (and, as a con-
sequence, information) is an entirely statistical concept. Nevertheless,
it appears intuitive that not all bit-strings are alike; some appear more
regular than others. The concept of Kolmogorov complexity [Kolmogorov,
1965]—sometimes called Chaitin complexity [Chaitin, 1966]—addresses
this issue.

In short, the Kolmogorov complexity of a string is low if it can easily
be obtained by a computation, whereas it will be high if it is difficult to
obtain it. This difficulty is measured by the length of the shortest pro-
gram that computes the string on a universal Turing machine. The use
of Turing machines to determine the length of the shortest program that
computes a particular hit-string is intuitive: Since a universal Turing ma-
chine can simulate any other Turing machine, the length of the program
computing string s, say, on Turing machine T, can only differ from the
program computing the same string on Turing machine T’ by a finite

123

124

5 Complexity of Simple Living Systems

length u(T, T'), the length of the prefix code necessary to simulate T on
T'. As this difference is constant (for each string s); the length of the
shortest program to compute string s on a universal Turing machine is
constant in the limit of infinitely long strings s, and we correspondingly
define the algorithmic complexity (Kolmogorov complexity) of string s as

K(s) = min{|p| : s = Cr(p)}, (5.3)

where |p| stands for the length of program p, and Cr(p) represents the
result of running program p on Turing machine T. Let us illustrate this
measure by a few examples. A blank tape (the string with all zeros)
is clearly a highly regular string, and correspondingly its Kolmogorov
complexity will be low. Indeed, the program needed to produce this string
can be very short: print zero, advance, repeat. The same is true, of
course, for every string with a repetitive pattern. Another way of viewing
algorithmic regularity is by saying that an algorithmically regular string
can be compressed to a much smaller size: the size of the smallest program
that computes it. More interesting is the regularity of a string that can be
obtained by the application of a finite but nontrivial algorithm, such as
the calculation of the transcendental number x. The string representing
the binary equivalent of & certainly appears completely random, yet the
minimal program necessary to compute it is finite. Thus, such a string is
also classified as algorithmically regular (though not quite as regular as
the blank tape). Kolmogorov complexity also provides a means to define
randomness in this context. According to the Kolmogorov measure, a string
r is declared random if the size of the smallest program to compute r is
as long as r itself, i.e.,

K(r) = |r| . (5.6)

Thus, algorithmically random strings cannot be compressed in any way.
From an intuitive point of view, algorithmic complexity does not seem to
be a good measure for the physical complexity of a string. First, random
strings should not be assigned maximum complexity, as we do not feel
that they are very complicated. On the other hand, the regularity of a
string does not reveal how complex the object or information is that
this string represents. For example, it is possible to create an (admittedly
insane) coding scheme in which the blank tape represents all of “The
Brothers Karamazov” Again we see that for a true measure of physical

5.4 Physical Complexity and the Natural Maxwell Demon 125

complexity, context is of utmost importance. But let us see if complex1ty
can still be defined in terms of Automata Theory.

5.4 Physical Complexity and the
Natural Maxwell Demon

The basic flaw in the Kolmogorov construction (as far as physical com-
plexity is concerned) is the absence of a context. This is easily rectified by
providing the Turing machine with a tape u, which represents the physical
“universe”, while the Turing machine with u as input computes various
strings from u. First, let us recall the definition of the conditional com-
plexity of a string s as the length of the shortest program that computes
s given string u [Kolmogorov, 1983]:

K(s|lu) = min{|p| : s = Cr(p, w)}, 6.7

where we introduced the notation Cr(p, u) as the result of the computa-
tion running p on Turing machine T with u as input tape. The conditional
complexity measures the remaining randomness in string s, i.e., it counts
those bits that are not correlated with bits in u. In other words, the program
p is the maximally compressed string containing those bits that cannot
be computed from u, as well as the instructions necessary to compute
those bits of s that can be obtained from u. The latter part of the program
is of vanishing length in the limit of infinitely long strings, which implies
that the program p mainly contains the remaining randomness of s. Of
course we can then immediately define the mutual complexity

K(s: u) = K(s) = K(s|w), (5.8)

which clearly just measures the number of bits that mean something
in the universe u. This will be our measure of physical complexity. In
Fig. 5.6 we give an example of a string where those bits that are obtained
by computation from u are shown in gray, whereas those bits that cannot
be obtained by a computation are white. By rearranging the bits on the
tape we can see that each string s can be divided into two sections, one
of length K(s|u) and one of length K(s : u).

This construction solves one immediate puzzle that Kolmogorov com-
plexity raises. What does it mean that a random string is computed? Since

5.4 Physical Complexity and the Natural Maxwell Demon

(if u is infinite) never be proven to be random. The reason is that it can
never be the result of a computation that a string is uncomputable.-

Let us now consider the physical complexity Kp(s) = K(s : u) in more
detail. Its meaning becomes clearer if instead of considering a string s
obtained by Turing machine T with universe u, we consider the ensemble
of strings S that can be obtained from a universe u with T. This ensemble
can be thought of as a probabilistic mixture subject to random bit-flips. In
other words, we imagine the output tapes to be connected to a heat bath.
In that case, we can associate an entropy with the ensemble of strings S,
H(S). Now consider a Turing machine operating on u, a specific universe.
Obtaining s from u then constitutes a measurement on the universe U,
and consequently not only reduces the conditional entropy of S given
u, but also the conditional entropy of U given s. Note that the universe
is assumed here to be fully known, i.e., there is only one tape u in the
ensemble U. While this must not strictly be so, here it is convenient to
assume that there is no randomness in the universe. Also, the length of
the smallest program that computes s from u, averaged over the possible
realizations of s, then just equals the conditional entropy of S given u. It
is known that the average Kolmogorov complexity over an ensemble of
strings just equals the entropy of the ensemble. Then

H(S|u) = (K(slu))s = —)_ p(slu) log p(s|u) , (5.9)

and
IS : u) = (K(s) — K(s|u))s = H(S) — H(S|w) . (5.10)

Note that (5.9) is not strictly a conditional entropy, as no average over
different realizations of the universe takes place. Indeed, it looks just
like a conventional Shannon entropy only with all probabilities being
probabilities conditional on u. Similarly, the physical complexity (5.10) is
not strictly a correlation entropy, but represents information conditional
on a specific universe u. In general, then, every computation, i.e., every
measurement, reduces the conditional entropy of S and increases the
information about u contained in the ensemble of strings S. Let us see
how such a process can proceed naturally.

Imagine a string s that shares some information with u, but some bits
are in fact random, i.e., it is undecided whether they correspond to any-
thing in u. Mutations are constantly changing these bits, and the Turing

127

5.5 Complexity of tRNA

only be applied to ensembles of strings, and that this complexity is just
the information contained in the population of strings conditional on the
environment to which the strings pertain. At the same time, because
this information is the same among all strings that differ only in the
hot bits, we can measure the complexity of any representative of this
group by just counting the number of its cold bits. Evolution proceeds
by a simple mechanism in which Turing machines constantly attempt to
compute on the strings, trying to obtain from the random parts (hot bits)
strings that also pertain to u. This can be viewed as ongoing, spontaneous
measurements that are being performed on S. Any time a measurement
succeeds (or in other words a Turing machine was able to derive some
bits of s from u), the conditional entropy of S decreases as the mutual
entropy of S with u, I(S : u), [compare Eq. (5.10)] increases. At the same
time, a cold bit usually does not revert back to a hot bit (information is not
lost) because of the mechanism of survival of the fittest. Interestingly,
this is just the Maxwell demon phenomenon: measurements are being
performed that allow a reduction of the entropy, but the reverse process
(the loss of information) is not occurring because such strings do not
prosper. This is equivalent to the demon allowing slow molecules into
one part of the box (thus reducing its entropy), while not allowing the
fast molecules the same. In a sense, the demon provides a semipermeable
membrane between the two halves of the box. The same can be said
for information in the process of evolution: information can enter the
genome, but it cannot leave. As a consequence, genomes are doomed to
accumulate more and more information and grow longer and longer as
a consequence. Thus, it seems as if it is indeed information that is “that
which increases when a self-organizing system organizes itself” [Bennett,
1995).

In the next section, we shall try to see how these observations can be
applied to real systems, whether natural or artificial.

5.5 Complexity of tRNA

If information is acquired by natural populations as described above, we
expect to see its telltale sign: fixed positions that code for information and
volatile positions that do not, in DNA or RNA. Tb reiterate the obvious,

129

130

5 Complexity of Simple Living Systems

it is of course impossible to tell which nucleotide is fixed and which is
not if we are given only one specimen of the DNA we are considering.
Furthermore, if given an ensemble of such strings, we must make sure
that enough time has elapsed since the last major evolutionary event (the
last phase transition) so that the population has returned to equilibrium.
In practice, this may be ‘a very difficult condition to fulfill.

To illustrate how important this equilibrium condition is for estimating
the complexity of a bit-string, imagine a piece of DNA that is completely
random, and that as a consequence is not expressed. If given enough
time for equilibration, each nucleotide should have a 25 percent chance
of being found at any of the locations of the random string. According to
the rules, each site is then declared volatile, i.e., uncorrelated with the
physical world in which the population is evolving, and thus carries no
information or complexity. Imagine further that shortly after we checked
that this section is random, somewhere else in the DNA of this organism
a mutation takes place that makes the host of this mutation far superior to
those that do not carry this mutation. In principle, if the resources for the
population are finite, this new strain is going to drive all the other strains
into extinction, and shortly thereafter all strings will reflect the new
genotype. Now, because the replication of the new genotype took place
so rapidly and all the old equilibrated genotypes have vanished, we shall
find close to 100 percent probability of finding one particular nucleotide
at the positions in the region of DNA that we previously determined to
be random, as opposed to the 25 percent measured before the transition.
Of course, this particular nucleotide is inherited from the string that
introduced the innovation. Still, we cannot conclude that the mutation
that took place elsewhere on the string also reverted the random section to
information. Rather, we have to wait until equilibrium is reached again,
i.e., until the forces of mutation have had a chance to randomize the
(previously) random section under consideration. Note that this can take,
depending on the rate of nucleotide substitution and the length of the
sequence, several million to hundreds of millions of years. It is therefore
safest, when estimating the complexity of DNA, to consider only sections
that are known to be old. Such is the DNA that codes for the well-known
transfer RNA molecule (tRNA).

tRNA is the RNA molecule that translates a DNA sequence into its
respective protein. This micromachine has two distinct ends: one where
it attaches to a codon of DNA (the anti-codon region indicated by a curved

5.5 Complexity of tRNA

FIGURE 5.8 Secondary structure of tRNA with 76 common positions, of
which 52 are independent and thus useful in the determination of its com-
plexity. Fixed positions are black, moderately diverged positions are gray, and
highly volatile positions are white (adapted from Eigen et al., 1989).

box in Fig. 5.8) and another where the respective amino acid is attached
(the 3’ end). Thus, there are many different such micromachines (each
specified by its anticodon). Clearly, these molecules with a distinct clover-
leaf structure (see Fig. 5.8) must have formed around the time when the
genetic code was fixed, i.e., around four billion years ago. Indeed, all life
on earth makes use of these molecules, and we can therefore sample the
genetic code for tRNA from a large ensemble indeed: all living things. The
equilibration bottleneck that occurs any time a new species is created is
avoided by determining the variation inside the tRNA of a specific species
that is known to have evolved very early on, for example, bacteria.

For determining the complexity of tRNA, let us first make the simpli-
fication from a quaternary alphabet to a binary one. The four nucleotides
of RNA can be divided into two groups: the purines (A or G), and the
pyrimidines (U or C). Thus, we can give each nucleotide the purine or
pyrimidine tag, and convert the quaternary string into a binary one. Fur-
thermore, the RNA molecule is folded in such a manner that certain
nucleotides are paired. Thus, only one member of the pair should be
counted when counting either fixed or volatile bits, as the other one is

131

132

5 Complexity of Simple Living Systems

100 percent correlated to its partner. If we subtract from the 76 positions
in the tRNA sequence in Fig. 5.8 the 21 paired positions, and the three
positions determining the anticodon, we are left with 52 significant po-
sitions. A rough estimate of the complexity of tRNA of the bacterium
Bacillus subtilis can be obtained by determining the volatility of positions
from a pool of B. subtilis sequences. Manfred Eigen and his collaborators
at the Max-Planck Institute in Gottingen [Eigen et al., 1989] determined
by comparison of 28 sequences that 21 positions (those filled in black in
Fig. 5.8) are identical through the pool, whereas 21 positions were mod-
erately volatile (gray circles) and 10 positions are fully diverged (white
circles). Thus, because we can assume that Nature has managed to com-
press the information contained in this tRNA to the smallest sequence
possible, we conclude that the complexity of the tRNA of B. subtilis is
somewhere between 21 and 42 bits. In general, a more precise result
could be obtained by estimating the entropy of the population of tRNA
strings, rather than of the individual bits. This is a difficult task, as the
probability for each genotype, P;, can only be estimated using its relative
frequency in the sample, n;/N, where N is the total number of strings in
the sample. Due to the sampling error that this introduces, such an esti-
mate will only be meaningful in the large population limit (populations
of the order D¢, where D is the size of the alphabet and ¢ is the average
length of the strings). Indeed, it can be shown (see Basharin, 1959) that
estimating the entropy of a variable

M
H=-) PlogP, (5.11)
=1

by estimating the P; from a finite sample N leads to a sampling error (to
first order in &
M-1

AH= ——

T (5.12)

where M is the number of possible values of the variable. Since the num-
ber of different values that a string made of £ instructions taken from an
alphabet of size D can take on is M = Df, we need a sample size of the
order N = D* for the correction to be of the order 1.

Quite generally, for finite populations, the entropy per string H(S|u)
(the remaining entropy given the universe string u) is not just the sum of

5.6 Complexity in Artificial Life

the per site entropies H(s;|u). The latter, the entropy for site j,

D
H(sjlu) = =)_ p(ilw) log p(ilu), (5.13).

where p(ilu) is the probability to find the ith instruction at site j (given
universe u), measures the entropy per site without regard to correlations
to other sites. As an example, consider a string of three sites that we label
a, b, and c. Then the entropy per string H(abc) is related to the per-site
entropies H(a), H(b), and H(c) by

H(abc) = H(a) + H(b) + H(c)
—[H(@:by+H(a:c)+ H(b:c)—H(a:b:c)
= H(a) + H(b) + H(c) — Heorr(abc) . (5.14)

While for independent sites the correlation entropy Heopy in general van-
ishes, this is not so for self-replicating systems. On the contrary, the
correlations between sites (described by conditional probabilities such
as pqp) are extremely important, and reduce the entropy H(abc---) to a
value much smaller than the simple sum Z‘f H(a)). In general, for a string
of length ¢, the correlation entropy can have up to 2¢ — 1 nonvanishing
terms.

As a consequence, the estimate based on counting the number of
preserved sites in the string should be considered a lower limit [Adami
and Cerf, 1997] on the amount of mutual entropy contained in it, as
we may overestimate the number of volatile bits (if some are correlated
with each other). Clearly, we have tried to avoid such correlations in the
fixed sites by not counting as one site all base pairs (since if one of the
sites is conserved its partner will be too), but in general the possibility of
more correlations cannot be ruled out, and can only be detected in large
samples.

5.6 Complexity in Artificial Life

In the following, let us attempt to estimate the information content, or
complexity, of a population of self-replicating computer programs along
the lines outlined in this chapter. Note that, with the avida system that

133

134

5 Complexity of Simple Living Systems

accompanies this book on the CD ROM, we can monitor the information
content from the beginning of evolution for as long as we want. To run
this experiment, we seed the world with a single ancestor that has the
capability to self-replicate. Clearly, this ancestor already contains some
information about its world, namely the ability to self-replicate. However,
since this program was written by humans, it certainly does not code this
information in the most concise manner. If we let the population equili-
brate after the computer memory is filled with the ancestor’s offspring,
we may begin to extract the information content.

In the limit of infinite population size, the information content of
the population is, as we determined earlier, the maximal entropy of the
population H(S) minus the conditional, or remaining entropy H(S|u). Note
that if we take logarithms to the base of the alphabet size D, the maximal
entropy H(S) is just the average length of the strings in the population,
and the conditional entropy is obtained as

H(S|u) = —) Pilogp P, (5.15)

where P; is the probability of finding genotype i when randomly sampling
the population, i.e., given the particular environment u. For finite popu-
lations, we would like to approximate P; by the number of times we find
genotype i in the finite population of N strings, divided by N,
p="1

= (5.16)
Because we need populations of the order D in order to accurately es-
timate the probability P; from the samples n;, entropies such as (5.15)
cannot be used to estimate the true entropy of the population [see also
Eqg. (5.12)]. Instead, we revert to the counting of volatile instructions, i.e.,
we sum up the per-site entropies

[4 ¢ D
HE) =) Hx)=-)_) pk)logpx), (5.17)
] ;X

where p(x) is the probability to find instruction x at the jth site in the popu-
lation, while ignoring the correlations. Again, this leads us to overestimate
the entropy H(S|u), and thus we underestimate the complexity

C(S) =€ —H(Slw) = ¢— H(¢) . (5.18)

5.6 Complexity in Artificial Life

Still, the hope is that the error committed is roughly constant for differ-
ent £, in which case we can monitor the increase in complexity during
an evolution such as depicted in Fig. 5.7. As a preliminary step toward
such a measure, let us assume that H(S|u), i.e., the number of hot bits
per string, is approximately constant during a run. Then we can monitor
the evolution of complexity just by viewing ¢ as a function of time. Of
course this is different from the physical complexity by at least a con-
stant H(S|u). In Fig. 5.9 we show the development of the average length
of programs from the beginning of a run (where the information stored in
the ancestral string only refers to self-replication) through the adaptive
process in which the strings learn a number of logical and arithmetic
tasks (upper curve, solid line). Since the information needs to be stored
in the genotype, the length of the code grows constantly. However, even
when the length (which can fluctuate) decreases, the amount of informa-
tion about the environment that is stored in it should never decrease. For
comparison we also show what happens if no information (except how
to self-replicate) is extant in the environment. In that case the length of
the code shrinks, and the complexity stays constant (lower curve, dashed

100 —T T— - T

length

0 — 1 i 1 L

0 10000 20000 30000 40000 50000
update

FIGURE 5.9 Evolution of average length in avida for complex landscapes
(upper curve) and flat landscapes without information (lower curve, dashed
line).

135

136

5 Complexity of Simple Living Systems

line in Fig. 5.9). Note also that attaching a random piece of code to the
programs does not change the complexity either.

Finally, for a run where insert and delete mutations are turned off
(such that all the strings in the population usually are the same length,
except typically for size-doubling) the physical complexity (5.18) can be
obtained, and its evolution compared to the development of fitness. In
Fig. 5.10, we can see how each fitness increase (lower panel) is accom-
panied by an increase in physical complexity (upper panel), reflecting
how much information was acquired per string during the transition.
Naturally, the complexity first overshoots its equilibrium value during
the transition (as explained earlier), but returns to equilibrium in a time

Physical Complexity

T T L} T
50 =
240 | .
b4
K
a
E
830 -4
20 E
L 1 . .
10000 20000 30000 40000 50000
t [updates]
Fitness
10’ L T L .
[1
s 10 4
10“ 1 1 1 -
10000 20000 3 40000 50000
t (updates]

FIGURE 5.10 Evolution of physical complexity (upper panel) in avida in
a complex landscape, compared with evolution of fitness (lower panel), in a
population of 3,600 strings.

5.7 Overview

of the order of the relaxation time of the system?. Once the population
has stopped learning, the complexity stays constant and is independent
of any size changes. Note that the logarithm in Eq. (5.17) is taken to the
base of the alphabet size, so that the complexity is expressed in units
“instructions”.

5.7 Overview

The complexity of a symbolic sequence is determined by the amount
of entropy it shares with the environment within which' it is to be in-
terpreted. This has two consequences: complexity is conditional on the
environment, and the complexity of a single sequence cannot be deter-
mined without reference to its environment because its mutual entropy
cannot be determined.

This complexity can also be formulated in terms of automata the-
ory. In this language, complexity is the mutual Kolmogorov complexity of
a sequence s with the tape of a Turing machine u. Similarly, the tape of
the Turing machine is the universe, or environment, within which the
sequence s is to be interpreted. In other words, the complexity of a sym-
bolic string is the length of the string minus the number of bits that mean
nothing as far as the Turing machine is concerned, i.e., it is the length of
the string minus the smallest length program that can compute the string
from the machine’s tape u. This smallest program represents the random-
ness, with respect to u, of the symbolic string under consideration, as
any nonrandomness can be computed from u by a program of vanishing
length in the limit of infinitely long sequences. For practical purposes,
as universal Turing machines are not always at hand (and their behav-
ior cannot always be predicted), we have to rely on the average mutual

2The decrease in complexity seen early in the run reflects the nonergodicity of the
system: the ancestor we start with is not well adapted, but is difficult to mutate also.
The true complexity of the ancestor is therefore much lower than indicated at the start
of the run, but reaches this value after about 5000 updates (and some major structural
changes). Similar structural changes and a corresponding drop in essential length is also
seen in the run depicted in Fig. 5.9, lower (dashed) curve.

137

138

5 Complexity of Simple Living Systems

Kolmogorov complexity, averaged over sequences s from an ensemble S.
This reduces to the mutual entropy considered above.

This measure of physical complexity can be used to estimate the com-
plexity of genomes. For this endeavor, a lower bound on the complexity
of the genome can be obtained by counting the number of conserved nu-
cleotides within an ensemble of similar sequences that has had the time
to equilibrate.

Problems

5.1 Consider a very small special-purpose computer with three binary ele-
ments p, g, and r. A machine cycle replaces p by r, replaces g by r, and r
by p-g. There are eight possible initial states, and in thermal equilibrium
they will occur with equal probability. What is the minimum amount of
dissipation that has to go on in one machine cycle [Landauer, 1961)?

5.2 An arbitrarily long sequence is formed by a flawed random number gen-
erator which, instead of generating a string of symbols taken from the
alphabet 0...9 with equal probability for each symbol, will follow each
zero by another zero, and then return to normal operation. The resulting
sequence, as a consequence, will display some structure: it will be com-
plex. What is its complexity per symbol? (Take your logarithms to the base
10 for convenience).

CHAPTER SIX

Self-Organization
to Criticality

Die Losung des Problems des Lebens erkennt man am Verschwinden
dieses Problems.'
L. Wittgenstein, 1922

The idea that living systems tend to self-organize has been around for
a quarter of a century [Eigen, 1971). The concept was introduced to un-
derstand the apparent chicken-and-the-egg problem of what came first:
proteins or nucleic acids. The main tenet is that biological systems are
organized by the information present in them, and that the information
in turn originates in the self-organized state by means of selection. As
a consequence, one witnesses the establishment of structure or order in
such a way that the entropy of the system is not maximal, i.e., the system
is not in equilibrium. Many people believe that self-organization is one
of the hallmarks of living systems.

Rather than reviewing the considerable amount of literature devoted
to self-organizing systems, we will confine our attention here to theories
of self-organized criticality (SOC), a concept introduced by Bak and cowork-

The solution to the problem of Life is apparent as the problem vanishes.

139

140

6 Self-Organization to Criticality

ers [Bak et al., 1987]. The concept will allow us to take a very different
look at the evolution of self-replicating systems, from the point of view
of statistical theories that admit critical points, i.e., a branch of physics
usually concerned with phase transitions in condensed matter systems.
The idea is to abstract the interaction between the elements in the system
(the self-replicating strings) to such a degree that they can be described
by simple theoretical models. It is then the task of the theorist to isolate
those characteristics of the models that carry over to living systems from
those that are just an artifact of the abstraction.

6.1 Self-Organization and Sandpiles

The paradigm for the self-organized critical state is the sandpile that Bak,
Tang, and Wiesenfeld (BTW) introduced, and that we will describe below.
Its usefulness lies partly in the fact that it is so simple, yet displays some
of the uncanny traits of natural systems such as power law behavior and
self-organization (see Bak, 1996 for a nontechnical introduction to SOC in
Nature). Power law behavior is seen in many physical systems, such as
thermal noise in electronic devices (shot noise), the flashing of fireflies,
turbulent fluid flow, activity patterns in neural networks, the distribution
of earthquake sizes (the Gutenberg-Richter law), the distribution of solar
flares and sunspots, the intensity fluctuations of quasars, and the size
distribution of initial masses of stars (the Salpeter law), to name a few.
Specifically, it was the frequency distribution of noise in many physical
systems known as 1/f noise that prompted the idea of SOC. In general we
distinguish between three main types of power laws in physical systems.
First, we have the power spectral density distribution (such as 1/f noise),
where

P(f) ~ fia , (6.1)
where f is the frequency and P(f) is the power at that frequency. In gen-
eral, this function describes which frequency is the most dominant in the
temporal behavior of the system under consideration: the power spectral
density is just the square of the Fourier transform of the signal under
consideration (see also Problem 6.2). The exponent does not necessarily
have to be @ = 1 such as in 1/f noise, but it is in general a small real

6.1 Self-Organization and Sandpiles

"number. Another kind of power law appears in size distributions:
1
NS~ (6.2)

which reflects a distribution of frequency of events N(s) as a function
of the size of events. This is the kind of distribution observed in the
Gutenberg-Richter law. Finally, we distinguish a power law in the temporal
distribution of events, where 7 is either the duration of an event (as in
the sandpile experiments that we will meet below), or better, the time
between events (also known as inter-event-interval distribution):

1
N@~ . (6.3)

Without trying to define SOC, let us immediately describe the sandpile. In
the simplest, one-dimensional model, imagine a linear lattice of L sites,
on which we can distribute grains of sand one at a time. Let the number
of grains deposited on site j be denoted by h(x;) (the height of the pile at
site x;, as shown in Fig. 6.1).

The rules of the game are now such that grains of sand are free
to accumnulate as long as the height difference between adjacent sites
does not exceed two (as for example is the case between the eighth and
ninth site in Fig. 6.1). Such a situation is unstable, and a grain has to
tumble from site j to site j + 1. Should site j + 1 become unstable due
to this process, the tumbling continues up until there are no more sites

A

h(xj)

T T —-
0 5 0 L x

FIGURE 6.1 Sandpile on a linear lattice with L sites.

141

142

6 Self-Organization to Criticality

with a height difference between them exceeding two: This is called
the minimally stable state. Indeed, dropping a grain randomly anywhere
on the pile may result in either no transport of grains, or in a cascade
involving any number of sites." Let us write down the update rules for
the sandpile. They can be implemented in a straightforward manner as a
simple cellular automaton updating the slopes z; = h(x) — h(x4,). Here,
we write rules in a general manner, where v grains topple if the critical
slope z, is exceeded (a supercritical site):

Rule (i) — “adding of sand™:
zi—>2z;+1, (6.4)

Zin1 —>'Zl‘+] —-1. (65)
Rule (ii) — “tumbling of grains": (see Fig. 6.2)

Forzj>z.: z;—>2z;—2v, (6.6)
Zjt] = Zjr + V. (6.7)

The lattice is furthermore subject to the boundary condition h(x.) = 0,
which means that sand slides off the pile at that end.

We can easily imagine what happens if we run such a sandpile for
an extended amount of time, dropping a grain of sand on a random
site, updating the pile such that no more sliding occurs, and repeating.
Surely we will witness many events where only one grain topples, a good
number of events where a few grains are involved in an avalanche, and a
few rare events where all the sites are involved in the avalanche. We may

A A
h(xj) h(xj)
z, —= 2,2 Zael ™" Zper -2
—_—
- o
0 ‘ru L Ij 0 xm-l L ‘rj

FIGURE 6.2 Tumbling of supercritical site x,, withv=1.

6.1 Self-Organization and Sandpiles

then ask what is the distribution of sizes of events. While this distribution
can be obtained quite easily by simply performing the experiment [see
Problem 6.2(b)], it is surprisingly difficult to arrive at the law from first
principles, i.e., treating the model that we outlined above analytically.
In Fig. 6.3 we show the abundance distribution of avalanches of size s
for a one-dimensional sandpile of linear dimensions L = 32, 64,128 and
v = 2 [Kadanoff et al., 1989]. The case v = 1 turns out to be trivial, i.e.,
the abundance distribution is a constant. We plotted the function on a
logarithmic scale for both the size s and the abundance N(s), to highlight
the power law behavior. Indeed, if the functional form is N(s) = Cs~F,
plotting the logarithm of N(s) against the logarithm of s will result in the
functional dependence:

log N(s) =logC — 1 logs, (6.8)

i.e., a linear law with slope —t. For the one-dimensional sandpile, we
can fit the function with an exponent of t = 1.0 £ 0.1 at small sizes.
Note the strong dependence on the system size, however. The slope of
the power law is best analyzed using finite-size scaling relations for this
system [Kadanoff et al., 1989].

The experiment that yielded Fig. 6.3 was performed in such a way as
to first fill the empty lattice with sand up to the point where adding a

N(s)

FIGURE 6.3 Abundance distribution N(s) of avalanches of size s for a one-
dimensional sandpile with v = 2 (the v = 2 “LL" model of Kadanoff et al., 1989)
for sizes L = 32, 64, and 128.

143

144

6 Self-Organization to Criticality

single grain will almost always produce a sliding event. This means, of
course, that the left side of the lattice (x) is filled to roughly its maximal
height given h(x,) = 0, and almost all of the slopes are at the critical point
z; = 2. This is called the critical, or minimally stable, state. Now, dropping
a grain may result in an avalanche that disturbs the entire pile. Note,
however, that while this critical state is disturbed by the avalanche, after
the event the pile will return to the critical state due to the continuing
dropping of the grains. Thus, the average slope of the pile represents a
fixed point of the system: the pile will always return to it, but the state
itself is highly unstable, and any small perturbation will result in another
runaway event. This gives us a first indication of why sandpiles may be a
good place to look for an analogy to the dynamics of living systems. There
is a certain robustness to the pile, and it responds to perturbation by events
of all sizes that may even be catastrophic, but still will always return
to an equilibrium state which, in turn, is singularly prone to another
perturbation. While the analogy is clearly very rough at this point, we
will continue to refine the model to make it closer to natural systems,
and find that the pile, as abstract as it is, may embody some of the same
principles that govern simple systems of self-replicating entities, albeit
in an entirely different medium.

Before examining the dynamics of the sandpile in a more rigorous
manner, let us first generalize it to two dimensions. Rather than first con-
structing a lattice with a height distribution h(x, y) and then calculating
the slopes, let us immediately work with the slopes z(x, y), defined at the
coordinates x, y of a two-dimensional lattice. The rules for updating the
lattice are again very simple. Adding a grain at site (x, y) results in

zx—1,y) - zx—-1,y -1, (6.9
zx,y—1)—> z(x,y—1) -1, (6.10)
zx,y) > z(x,) + 2, (6.11)

while a toppling event takes place if
Z(x,y) > z.: zZ(xy > z2xy) — 4, (6.12)
zx,yxl) > z(x,yx1)+1, (6.13)
zZxxl,y) > z(xx1l,y)+1, (6.14)

i.e., if the slope at one site is supercritical, it is distributed evenly among
its four neighbors to the north, east, south, and west. In the examples we

6.1 Self-Organization and Sandpiles

........... MM s e e e e e
......... L
.......... N
.......... L
.......... P T S
.......... [N Y

.......... YT S

...... ARamABWAR: o RmMME - .

------- LR EE RN TR LR N RN E N
----- SuasEIRNAVNDIRNRANCRN-
TR RN N TN NN YN W RN NN N R
comeaseassRaeRNaANNaGR - o
----- S anEaseERERSERRw - e
..... acscascRcEATRRR NS
....... AcassessaenceaRR: oo
------- CSnasauaRuR RO E oo
....... & S meESATWBRER o
------- %' - SwasARNEuNn: G- - -
........... W e s mBmEW - e

FIGURE 6.4 Two-dimensional lattice of size 25x25 with avalanche of 207
sites.

show here we choose z, = 4, but this is not necessary. If the lattice is
filled with sand again like in the one-dimensional case (for example by
dumping an excessive amount of sand on the table and updating until no
toppling takes place anymore), we can witness avalanches of all sizes by
randomly dropping grains on the lattice at an arbitrary site and updating
until no more site is affected. An example of such an avalanche for a
25x 25 lattice is shown in Fig. 6.4. We can repeat this experiment many
times and ask again about the distribution of avalanche sizes. Again,
we will find power law behavior. However, this time the exponent of
the power law is slightly different. In Fig. 6.5 we show the (binned)
abundance distribution of 20,000 avalanches on a 50x50 lattice, fitted
with an exponent 7; = 1.12 + 0.05.

Clearly, the power of decay of the size distribution depends on the
geometry of the system. For a three-dimensional lattice, BTW found an
exponent t3 = 1.37 [Bak et al., 1988]. The important point is that the
law of decay does not involve any scale, as would be the case for an
exponential law (such as radioactive decay, where the scale is the half-
life) or a logarithmic law, which also requires a scale. Indeed, the power
laws occur precisely in the case where there is no scale to set an average.
More precisely, there is no scale of the same order as the range where
we observe power law behavior. This is an important point that needs

145

146

6 Self-Organization to Criticality

N(s)
3

n { i
10 ll 2 3

10 10 10
S

FIGURE 6.5 Size distribution of avalanches obtained from 20,000 avalanches
on a 50x 50 lattice.

to be stressed, as for any system that we investigate experimentally or
numerically, there is one fundamental scale: the size of the system under
investigation, as we have seen in the one-dimensional case. Of course for
the sandpiles introduced here, this is the size of the lattice. Clearly, we
cannot find avalanches that involve more sites than are in the lattice, so
we cannot expect the power law to be valid close to this limit. In general,
therefore, we must be sure to study finite size effects by fitting the power
law in such a way that the finite size is taken into account. In Fig. 6.5
above, this was unnecessary, as we stopped the fit at an avalanche size
103, whereas the ultimate cutoff is of course 2500, the maximal number
of sites.

Let us try to summarize the main requirements that must be met in
order to observe a self-organized critical system. Note that this list does
not specify if any of the conditions are necessary or sufficient. Because
as of yet, there is no universal theory of SOC, the list looks somewhat like
a shopping list, but gives a good idea about where to look to find SOC: It
appears that we want

e A dissipative dynamical system with (locally) interacting degrees of
freedom.

6.1 Self-Organization and Sandpiles

e Propagation of fluctuations described by a dissipative transport
equation.

e Noise that can propagate through the entire system.

e An infinitesimal driving rate.

Let us go through these one by one. Dissipation plays an important
role in self-organizing systems for the simple reason that it would be
almost impossible to transmit signals in a system that is both noisy and
nondissipative. There is a very general theorem of thermodynamics that
states that fluctuations, which as we shall see essentially represent the
signal, are always accompanied by dissipation. Without going into the
mathematical details of this theorem, we can intuitively understand that
it would be hard to encode and decode signals into the fluctuations if
there were no way to damp them. Local interactions are obviously an
important ingredient in self-organization, even though it is in principle
possible to imagine systems that self-organize but where each part of the
system is in direct contact with any other. Therefore, the locality may not
be a necessary condition, even though most physical systems have that
property.

The second condition is almost a consequence of the first: only in
very awkward systems that are dissipative and have locally interacting
degrees of freedom is the transport of fluctuations not described by a
dissipative transport equation (such as a reaction-diffusion equation).
However, it is important to require that the entire system is accessible
to the fluctuations and therefore to noise (third condition). Indeed, we
cannot imagine self-organization to occur in a system that has parts that
are not connected to the rest. It is, after all, the fluctuations that provide
for the communication between all parts of the system, which results in
self-organization.

Finally, and most importantly, the system has to be driven at an in-
finitesimal rate. This most important condition will reappear in many
different guises throughout this chapter. First, any system that is to self-
organize has to be driven, i.e., there must be a force that is responsible for
providing the fluctuations that may or may not result in catastrophically
big events. For the sandpile, this is of course the dropping of the grains,
and in the protocol outlined earlier we made sure to specify that one
waits until the avalanche is over before dropping another grain. This is
not, strictly speaking, a physical situation. Since the system is driven by

147

148

6 Self-Organization to Criticality

the dropping of the grains, we ought to define a constant driving rate:
the number of grains dropped per unit time [Becker et al., 1995] (see
also Schmoltzi and Schuster, 1995, for introducing a time scale in the
Bak-Sneppen model [Bak and Sneppen, 1993]). However, even if this is
only specified on average, (so that the dropping of grains is still a Poisson-
random event) we encounter the possibility, for every finite driving rate,
that a grain of sand is dropped before the last avalanche is completed. We
see immediately that if we increase the driving rate in such a manner
that we do not wait for the avalanche to finish most of the time, we reach
a situation of steady flow of sand. Clearly such a state is neither self-
organized nor critical. Indeed, we shall see later that SOC only results
in the limit where the driving rate is infinitesimally small. In this limit,
the system will always return to its critical state, which is so prone to
disruption. It is this self-tuning feature that has attracted the most atten-
tion, as all standard statistical systems that possess a critical point (such
as the freezing transition from water to ice, or the freezing transition in
magnetic Ising systems) sport a parameter (the temperature in the latter
examples) that has to be fine-tuned to obtain this state. In SOC, the system
apparently self-tunes to this state. Before attempting to understand this
feature, we first describe another model that displays SOC and then show
how SOC may be an important ingredient in the behavior of populations
of self-replicating entities, specifically artificial ones.

6.2 SOC in Forest Fires

Here we investigate another simple model that displays SOC but that is
easier to analyze in a systematic manner. The analytic treatment yields
some important insights into the limits of self-organized behavior and
points to possible generalizations. The Forest Fire model was first in-
troduced by Bak, Chen and Tang [Bak et al., 1990]. We will henceforth
refer to their model as Model 1. It was subsequently improved by Drossel
and Schwabl [Drossel and Schwabl, 1992] (Model II). Let us first consider
Model 1.)

Imagine a two-dimensional lattice where each site can be in any one
of the following states:

6.2 SOC in Forest Fires

e T [tree, susceptible to being burned)
e B [a burning tree]
e A [ashes: a tree that has burned down]

The dynamics of the model are determined by the following update rules.
In one time-step, any B—A, i.e., a burning tree ceases to burn after being
reduced to ashes. At the same time, any BT— AB, i.e., a burning tree will
ignite an adjacent one, while leaving ashes only at the next update. Also,
new trees can grow from ashes: A—T with a small probability p < 1. As
we shall see, Model I turns out not to be critical. Rather, the dynamics are
more similar to disease-spreading dynamics. The reason for this is that
the system is not driven, so rather than returning to a critical state in a
dissipative manner, we are witnessing waves of live and dead trees in the
system. The crests of these waves are separated by a fixed distance that
provides a scale in the system, as was reported in [Grassberger and Kantz,
1991). We thus notice that the absence of a dissipative element renders
the dynamics periodic rather than critical.

The required driving was added in the form of a small probability
for trees to start burning spontaneously, i.e., a probability for lightning
strike f, in Drossel and Schwabl, 1992. Thus, the added rule is that a tree
will start burning: T—B with a small probability f « 1. Implementing
this algorithm reveals that the dynamics of the forest is such that, after
a transition period, the forest settles into a steady state with a constant
mean forest (nonburning trees) density p. Let us estimate the dynamics
of the forest in this steady state.

Following Drossel and Schwabl, let us calculate the time between two
lightning strikes hitting a tree. This can be done in a general manner
for forests of all dimensions, even though it becomes a stretch to imagine
any forest with dimension larger than d = 2. If the forest is d-dimensional
with linear dimension L (such that the total volume of forest is L%), we
obtain this time scale—the time between two strikes—by multiplying the
probability for a tree to be hit, f, by the mean tree density p and the
volume of trees, to obtain the rate at which trees are hit:

Ry = fpL?. (6.15)

Naturally, the time between hits is R;l. We can then calculate the average
number of trees growing between two lightning strikes, which is just the
time between such strikes times the density of ashes (1 — p) multiplied by

149

150

6 Self-Organization to Criticality

the probability of tree growth p and again the volume of forest L¢. Thus,
the average number of growing trees § is

=vrd
pA-PL_pl-p (6.16)

faLA f p
Since we are in a steady state situation, this is also the average number of
trees burning. Due to the nearest-neighbor interactions in this model, fires
form clusters of burning trees surrounded by ashes. As a consequence,
the average number of burning trees is the same as the average cluster
size in this model. As we shall see, the average cluster size in a model
in which there is no scale other than the size of the system diverges as
the system size is made arbitrarily large. This is a key element in SOC
systems, so let us study this in more detail.

Clearly, the distribution we are interested in is the size distribution of
burning clusters, N(s). Armed with this distribution, we can write down
the total number of burning trees as

—-p

s =

Smax
Ny =) _sN(s), (6.17)
and thus the probability for any site to be burning is
sN(s)
PO = 1= (6.18)

where Smax is the maximum size of a cluster. Then, the mean number of
burning trees is

_ Smax Z?mu SZ N(S)
== TN

Let us determine what happens if we assume a power law form for the
distribution of clusters N(s):

(6.19)

N(s) «x $ (6.20)

with a critical exponent . We find, not surprisingly, that the average size
of the cluster is determined entirely by the only scale in the problem,
Smax: as

§3-t if 2<1t<3,

5 o max

Smax/ 108(Smax) if T=2. (6.21)

6.3 SOC in the Living State

Consequently, as smax diverges when the system size tends to infinity
(L — 00), the average size of clusters also must diverge. Let us go back
to the estimate we derived previously, Eq. (6.16). It becomes clear then
that the average cluster size diverges only in the limit

flp—0, (6.22)

which we recognize as the condition for an infinitesimally small driving
rate! Thus, the system approaches the critical point in this limit. Note
that condition (6.22) more precisely is a condition for the separation of
time scales. According to this, we should only observe SOC behavior in
the limit where the time scale for growing trees is much smaller than the
time scale to ignite them.

6.3 SOC in the Living State

Let us now make the concepts introduced in these abstract models more
palpable as far as living systems are concerned. If self-organization to crit-
icality is a feature of living systems, what distribution is showing power
laws? What is the agent of self-organization? How are fluctuations trans-
ported throughout the system? What is the critical threshold parameter?
We shall attempt to answer all of these questions for a simple system of
self-replicating strings. First, we shall try to argue for the existence of a
self-organized critical state in populations of self-replicating strings and
then carry out experiments on the computer to support the claim.
There is no shortcoming of distributions in natural living systems
that show power law behavior, i.e., are of the same type as Egs (6.1-6.3).
We must be careful, however, not to attempt to find an SOC explanation
for all of them. Most intriguing is perhaps the distribution of extinction
events throughout the fossil record depicted in Fig. 6.6 [Raup, 1986], and
the episodic nature of evolution associated with it: (the punctuated equi-
librium scenario advocated by Gould and Eldredge [Gould and Eldredge,
1977; Gould and Eldredge, 1993]. The general idea is that some sort of
ecosystem forms between all the competing species that makes them in-
timately connected. A small perturbation of this equilibrium would then
result in extinction events of all sizes, which will leave a system that
slowly creeps back to the self-organized state. Here, we shall investigate

151

152

6 Self-Organization to Criticality

A

40—.
s ||
& 30 -
w
Nt
o
8 20
=
Z

10

0 1 | | —

0 40 80 120 160
Extinctions per Stage

FIGURE 6.6 Distribution of extinction intensities based on recorded times
of extinction of 2316 marine animal families (adapted from Raup, 1986).

a simpler model that does not assume such a strong interconnection
between the species. Rather, the self-organizing agent we consider is in-
formation. We shall assume a population of strings of code whose only
distinguishing mark is its genotype, reflecting (in the cold, i.e., non-
volatile, spots) the information it has stored about its environment. The
idea will be that if the population is sufficiently equilibrated, almost all
of the strings (in a certain confined region) exhibit the same information.
Consequently, they are susceptible to avalanches of all sizes instigated by
rare mutation events that introduce new, powerful information into the
population, akin to the seeds of first-order phase transitions spawned by
nucleation events.

Newman et al., 1997 challenged the view that criticality is apparent
in the tiema experiments that we shall discuss here, on the grounds that
SOC is usually associated with second-order, rather than first-order, critical
phenomena. While indeed one expects that SOC based on the connected
ecosystem mechanism should display second-order dynamics (and we
shall investigate the picture of SOC in terms of second-order phenomena
later in this chapter), there is good reason to believe that SOC can also be
described in terms of first-order transitions (see Gil and Sornette, 1996),
i.e., the waves of invention occurring in tierra as well as avida.

6.3 SOC in the Living State

Let us set up our model (theoretically at first) such that we can identify
the critical threshold parameter (the analogue of the sandpile’s critical
slope). Imagine a population of N strings self-replicating in an environ-
ment with limited resources (so that the number of strings is constant).
Each string is composed of ¢ instructions taken from an alphabet of size
D. The total number of different strings is the maximum number of geno-
types Nmay = Df, usually a very large number. In the current population
at time t, let there be N, different such genotypes in existence. Remem-
ber from Chapter 4 that the maximum number of genotypes represents
the total volume of phase space available to the population, while N,
is the volume currently occupied by the population. The population of
N strings falls into subpopulations of n; strings each of genotype i cur-
rently in existence, with each genotype i furthermore characterized by
its replication rate ¢;. We then know that

NS
N=)n, (6.23)
and we can define the average replication rate of the population:
N .
€=y N (6.24)

Note that the average replication rate is intrinsically time-dependent,
while for Eq. (6.23) we have the additional constraint N = 0. We can write
down a simplified equation that determines the time dependence of the
genotype occupation-number n;, if we introduce the mutation rate R as
the probability for mutating a site per unit time,? and the corresponding
probability for a single string of length £ to be hit by such a mutation,
p =~ RE. Then, in an approximation where the average number of strings
removed per unit time is proportional to the average replication rate (this is
the chemostat approximation, where all strings exceeding the total number
of allowed strings N are simply removed), we can convince ourselves that
[Adami, 1994]

nu(t) ~ (€; — (€) — RE) ni(t) . (6.25)

*This is a cosmic-ray mutation rate that affects each string in the population in the
same manner. As Rf « 1 always, we can approximate 1 — (1 — R)* = R¢, unlike in copy
mutations where R¢ can be of the order 1 or larger.

153

154

6 Self-Organization to Criticality

Several assumptions go into the writing of Eq. (6.25), which here serves
only to identify a critical parameter. On the one hand, we assumed that
mutations are Poisson-random events that simply remove the genotype
under consideration. In more realistic systems we need to include errors
arising from an erroneous copy operation in the replication process. Such
mutations behave differently than the external mutations we are consid-
ering here. An explicit model for populations subject to copy mutations
will be presented in Chapter 11. Also, we ignore the fact that a muta-
tion might produce a genotype of the type i by a mutation hitting some
genotype j. In the limit where N, « Nmax this is a safe assumption, but
it does imply that Eq. (6.25) violates the number conservation equation
N = 0. If we ignore all these problems for the moment and introduce the
growth-factor

yi=€—{€) —RE, (6.26)

we can immediately solve Eq. (6.25) in the static limit, i.e., in the limit
where the average replication rate is approximately independent of time,
as

ni(t) = Noe”* (6.27)

where Nj represents the population of genotypes of type i at time t = 0.
This equation implies that each genotype must either grow exponen-
tially if its growth factor is larger than zero, or shrink in the same
manner if it has a replication rate that renders the growth factor neg-
ative. Such a behavior is, however, incompatible with our assumption of
equilibrium that guaranteed that the average replication rate is approx-
imately time-independent. Thus, growth factors unequal to zero, while
entirely possible, cannot possibly be a fixed point of the population, i.e.,
a point to which the population always returns. Rather, this point must
be characterized by

Vi =0 (6.28)

for almost all genotypes. This must then be the critical threshold param-
eter that organizes the entire population. Let us imagine a population
poised at this state, where almost all y; vanish (except for those few neg-
ative y; that are results of mutations and are quickly purged from the
population). Since no genotype dominates another, the situation is qua-
sistable, even though genotypes are still being created and go extinct at

6.3 SOC in the Living State

a small rate that is determined by the number of hot instructions of the
main genotype. Indeed, it is in general fair to assume that the population
is dominated by a quasispecies (a term introduced by Eigen, 1971), which
we can imagine as the genotype specified by its cold instructions only.
While there can in principal be several quasispecies in the population,
they must all be “degenerate” in the repligcation rate (must all have the
same replicate rate), as otherwise one would drive the other to extinction.
If enough time has elapsed since the establishment of the quasispecies,
we realize that the information that characterizes it has spread through-
out the population. The population then is very much connected, held
together by the invisible thread that is their common cold sites: their
complexity. Every mutation that changes the replication rate of a string
to one higher than the previous epes, the replication rate of the quasis-
pecies, constitutes a ripple: a fluctuation in y;. Because the population has
organized itself to a state where y; =~ 0 almost everywhere, such a fluctu-
ation can indeed travel throughout the entire population, a criterion that
we remember as being on our shopping list for self-organized criticality.

Thus, we find that in this simple model information indeed organizes
the population, and since the information is part of the population, we
can safely say that the population self-organizes. But is it a critical state,
and which parameter determines the infinitesimal driving rate? The an-
swer to both of these questions lies in the magnitude of the mutation
probability per string. First, we easily recognize the small driving of the
sandpile (initiated by the dropping of the grains) in the driving which re-
sults from mutations creating ever-fitter genotypes. In the same manner
we see that a condition for the emergence of a self-organized critical state
is that avalanches due to new inventions (i.e., events that created a sub-
stantially better replication rate) must be rare, so rare, in fact, that most
avalanches are long over (i.e., have eradicated and driven to extinction
each and every inferior genotype) before a new invention sweeps through
the population. Otherwise, we would witness overlapping avalanches just
as in the continuously driven sandpile, and no critical behavior could
emerge. On the other hand, the probability of a mutation leading to a fit-
ter genotype must not be too small, as otherwise we would not find any
avalanches on the time scale of our observation, and again no SOC would
result. Thus, SOC in living systems is predicated upon a mutation rate
just right so that the critical state is formed. While this sounds much like
the tuning of parameters in standard statistical phase transitions, we shall

155

156

6 Self-Organization to Criticality

argue that this critical mutation rate is actually achieved for most reason-
able parameters of the living state, and furthermore there is evidence,
both experimental and theoretical, that living systems actually arrange
for this mutation probability to be just in the critical range [Domingo et
al., 1980; Adami and Schuster, 1997]. How this is achieved is part of a
different discussion, which we will enter when we describe the “race” to
the error threshold (Chapter 11).

Let us now turn to observable consequences of self-organized criti-
cality in such simple systems of self-replicating strings. First, we expect
to see a punctuated picture of evolution, where fitness does not change
gradually, but in bursts that are initiated by a genotype that found a better
way to exploit the environment. The time between such events must be
large compared to the time it takes to communicate this new information
to the rest of the population. If you remember the discussion in Chapter
4, you will easily identify the latter time as the relaxation time of the sys-
tem. Thus, we note again a separation of time scales, a recurring theme.
Let us look at Fig. 6.7, a typical time-evolution of fitness (i.e., replication
rate) of a population of self-replicating strings, here computer code from
the tierra world, the system introduced by Ray, 1992 (the direct ancestor
to our avida system).

1.2 T L 1 T T T T T

1.0

a

0.8

0.6

Fitness

0.4

0.2

0.0 L 1 1] 1 1 1 1

0.0 0.5 1.0 1.5 2.0 25 3.0 3.5 4.0 4.5
10? Instructions

FIGURE 6.7 Normalized replication of best of population measured every
million executed instructions for a population of tierran strings, with D = 32,
£ =100, and N = 1000, (from Adami, 1995b).

6.3 SOC in the Living State

The staircase structure of the fitness curve is very evident, underlining
that evolution in that system indeed proceeds in such a way that periods
of long stasis (the plateaus in Fig. 6.7) are interrupted by very brief
periods of invention that move the population to a new plateau rather
quickly, compared to the length of the plateaus. Time is measured in total
number of instructions executed by the population, which is a convenient
measure even though it does not scale well with population size.

Let us first look for any signs of periodicity in the dynamics. This
would be revealed by a preferred frequency in the power spectrum of a
time-series such as in Fig. 6.7. This spectrum (obtained by the so-called
maximum entropy method) is shown in Fig. 6.8, and reveals no bumps
of any kind: the spectrum is, except for the finite size effects at small and
large frequencies, a pure power law:

1
ﬁ .

Note that power law behavior for the spectrum is a necessary, but not
a sufficient, condition for self-organized criticality. It reveals that there
are no periodic dynamics in the population, but does not rule out certain

P(f) ~ (6.29)

P(f)

FIGURE 6.8 Square of Fourier transform (power spectrum) of the time-series
shown in Fig. 6.7. The dashed line is a fit to P(f) ~ 1/f? (from Adami, 1995b).

157

158

6 Sclf-Organization to Criticality

random processes that have a power law frequency spectrum but show
no signs of self-organization or critical behavior (see, e.g., Problem 6.2).
To extricate the latter, we must look at temporal correlations and thus ask
about the distribution of plateau lengths (in units “millions of executed
instructions”). This seems to be a natural question, since the beginning of
a plateau certainly signals the birth of a new quasispecies, while the end of
a plateau heralds its demise. Thus, the length of a plateau reflects the time
of domination of a quasispecies. Since the total number of representatives
of that quasispecies that ever lived must be proportional to the length of
time it dominated the population, the length of the plateaus may also tell
us something about the absolute size (total number that ever lived) of a
species. Clearly, however, a single run such as depicted in Fig. 6.7 will
not be able to reveal this size distribution to us.

Let us couch the question about the distribution into a more technical
language. We are here interested in the inter-event-interval distribution,
where an event is defined as the emergence of a genotype noticeably fitter
than those present before that event. The restriction to noticeably larger
fitness improvements is a rather practical one, enabling us to pick out
visually the beginning of a new epoch. In each run, we witness between
five and ten such events on average, but sometimes less and sometimes
more. In the particular set of runs that are reported here, the strings were
adapting to a specific landscape created by the user: one in which the
strings were guided to learn how to add integer numbers (see Chapter 11
for more details). The specific kind of landscape is not our concern here,
even though this is a subject of fundamental importance that we will
look into in Chapter 8. We shall only demand that the landscape contains
enough information (to be discovered by the strings) that no population
will ever exhaust it during the time that we spend in observing the popu-
lation. This, of course, is just the requirement that there always be a very
small driving rate for the population: if the landscape is exhausted, or in
other words, if there can be no more fitness improvement, we expect to
lose the SOC behavior.

For such effectively infinite landscapes, we observe the adaptive be-
havior of the population at a fixed mutation rate and count the number
and lengths of epochs. The distribution of number of epochs as a function
of the length of the epoch is our inter-event-interval distribution. Let us
look at the results, obtained in 50 runs under identical conditions, at a
moderate mutation probability of the order 1076, The sizes were obtained

6.3 SOC in the Living State

by measuring (painstakingly) the lengths of every epoch by hand (vi-
sual inspection first, then extracting the beginning and end of the epoch
through the identification of the jumps in fitness), so as not to bias the
analysis. As the data obtained with tierra are somewhat noisy, a program
designed to find the beginning and end of an epoch might easily be fooled.
Still, the 512 epoch sizes that were extracted from these runs need care-
ful statistical interpretation. For example, let us try first to bin the data
into bins of length 100 (millions of executed instructions). For each data
point that we obtain (the first one covering epochs of lengths between
1 and 100, centered at 50), we estimate the error in that number to be
due entirely to statistics, i.e., we assume a +/N error, which is certainly
appropriate for those bins with very few entries (at large epoch sizes), but
could underestimate the error for small epochs, which may be affected
by systematic trends. The result of such an analysis is shown in Fig. 6.9.
We attempt to fit the data with the smallest number of parameters that
seems reasonable to us, in the form of a power law

N(z) = Aiﬂe"/T : (6.30)

T

where T is our cutoff parameter. The cutoff simply reflects the fact that
our measurements are finite in time: most runs were terminated after

10 T T T T

N(T) = A 77 exp(—7/T) |

B = 052 +/— 0.1

T = 400 _

N(T)

10 F .
bin = 100

1 2 ul
2 3

7 [10°® Instructions]

FIGURE 6.9 Fit of the binned abundance distribution with bin size 100.

159

160

6 Self-Organization to Criticality

between 500 and 2000 million instructions had passed (while a few were
allowed to exceed the 4000 million mark, such as the one in Fig. 6.7). Nev-
ertheless, we will certainly undersample lifetimes larger than 500 million.
This is taken into account here by an exponential decay. There is a certain
amount of freedom in the choice of a cutoff function, which can affect the
result of the fit. Consequently, care must be taken in that choice also. In
general, a full finite-size scaling analysis, which would involve repeating
the experiment and cutting off the experiment at different times, should
substitute for choosing a cutoff function.

As the resulting fit with 8 = 0.52 and T = 400 has a x> = 1.1 per
point, we can at least be confident that we are not over-fitting the data.
Yet we should not be overconfident, as we find that 8 depends strongly
on the size of the bins chosen (a fact that can without effort be shown
analytically, see Problem 6.3). Choosing a bin size of 200 results in data
with smaller error bars, but the fit changes acccrdingly, as we can see in
Fig. 6.10. At the same time, our measure of confidence, the x? coefficient,
drops to x* = 0.44, suggesting that we overfit the data.

In the face of such adversity, we can choose another path to extract
meaningful results. Consider a different distribution M(t), obtained from
our distribution N(r), by asking about the distribution of events with a
size larger than t. As this distribution, which has the same power law

10 — — T

N(T) = A 777 exp(—7/T) 1

g =073 +/- 02
T = 530 J

N(T)

T [10® Instructions]

FIGURE 6.10 Fit of the binned abundance distribution with biﬁ size 200.

6.3 SOC in the Living State

10 . : .
M(T) = A" T T(1=g,7/T)
10' F B = 057 +/- 0.1 -
. T = 540
o0t
=
107 F
bin = 20
10‘2 " 1 N
10' 10° 10°

T [10°® Instructions]

FIGURE 6.11 Fit of the integrated abundance distribution.

behavior, can be obtained from the first:
1 [o o]
M(r) = ;/ N@®) dt, (6.31)

but has much better statistics (due to the effect of summing the distribu-
tion at each), we may have better luck fitting that distribution without
the need of large bins. Fortunately, the functional form for the fit of
M(7) is dictated to us, as the integral appearing in Eq. (6.31) can be done
analytically, resulting in an incomplete I'-function:

M(t) = A'%I‘(l -81T). (6.32)

Note that fitting M(t) should yield the same result as fitting N(7) (as we
use the same parameters and the same functional form for N), except
for the statistics and a much smaller bin size. The result is shown in
Fig. 6.11, and suggests 8 = 0.57. The analysis presented here leaves us
fairly confident that in the populations we studied, the time between
avalanches is indeed distributed as a power law. Still, we cannot be very
confident in the numbers that resulted from the fits, and we must wait for
a much more extensive investigation with at least an order of magnitude
more epochs, and an analysis of the influence of system size and mutation
rate on the critical parameter B, to be convinced that such systems self-

161

162

6 Self-Organization to Criticality

organize to a critical state. Fortunately, with the avida system, such an
investigation is within the realm of possiblility.

Even though the results we have in hand now-are not fully conclu-
sive, let us speculate about their significance. It appears that there is no
temporal scale of the order of the observational time in the system that
would determine an average plateau length. In other words, a numerical
estimate of the average plateau length 7 will always reflect the length of
time the system is observed, instead:

T X Typax - (6.33)

This implies that 7 is, in self-organized critical systems, a meaningless
quantity that is never independent of the way we observe the system.
Therefore, it can also not be used to make any predictions about the tem-
poral behavior of same. In other words, it is impossible, armed just with
statistics gathered from the past, to infer how much longer, on average,
the current epoch will last. This is a somewhat satisfying side effect of
criticality and the absence of scales.

If the time between events has a scale-free distribution (or, more
precisely, is governed only by the size of the system), what about the
distribution of sizes of events? The latter can be defined in two ways.
If we consider as the size of an event the total number of members of
the new dominating species that will be produced (or equivalently the
total number of subspecies it will spawn) before it is driven to extinction
by a new species, we have very good evidence (both from natural and
artificial systems) that this distribution is also scale free. Indeed, this has
been investigated in detail using the avida system in Adami et al., 1995
(see also Chapter 9).

As far as the distribution of sizes of jumps (i.e., the vertical axis in
Fig. 6.7) is concerned, the situation is somewhat more tricky, as this may
depend on the kind of landscape on which the population is evolving.
The landscape used in the analysis above is probably too poor, and the
runs not long enough, to take a stab at estimating this distribution. Still,
the results are compatible with the assumption that there is also no scale
in the distribution of fitness increases, at least in an infinite landscape.
This would indicate that any time the population climbs a new peak in
the landscape, the number of possible increases in fitness, and the size
of such possible increases, is unchanged. This is in stark contrast to finite

6.3 SOC in the Living State

landscapes, where each improvement reduces the number of possible
future improvements. We will discuss fitness landscapes in much more
detail in Chapter 8.

In the meantime, let us speculate about the nature of fitness curves
in landscapes where neither the time nor the size of a fitness jump is
dictated by any scale. Such curves are fractals, and look similar at any
scale of observation. So, if, for example, Fig. 6.7 were a true fractal, then
what appears as a plateau to the naked eye would, under the magnifying
glass, be resolved into many very small jumps (as is almost discernible at
the beginning of the fitness history in Fig. 6.7). Because of the finiteness
of the actual landscape in the experiment, and the noisiness of the data,
this aspect is difficult to discern for the later part of the history. Fractals
of the kind we have in mind are termed Devil’s Staircases in the litera-
ture (see, e.g., Mandelbrot, 1977). If evolutionary histories are generally
Devil's staircases, a number of interesting consequences can be obtained
for evolutionary systems in general. First, it would imply that no fitness
jump is too big to be explained by common mutational events such as
the ones that drive the populations in tierra. As the evolutionary system
self-organizes to the critical state, it poises itself for such grandiose events
to occur, albeit in an unpredictable manner. Thus, there is no need for
more than one theory to explain all sizes of evolutionary advances. Sec-
ond, it would imply that, because the fitness histories are self-similar,
certain global aspects of evolution occurring on very large time scales
may already be present in the microscopic histories, and can be inferred
from them.

Before treading on arguably more solid ground in the next section,
let us issue a few caveats about the preceding discussion. The arguments
presented there applied to finite populations of self-replicating strings, in
which the only means of competition was acquiring a higher replication
rate. While this may have been a scenario present on the very early
earth, such populations are unrealistic in the present world. Specifically,
we must keep in mind that if speciation occurs on a higher level of
taxonomy (such as to a genus), we must remember that the population
may then segment into parts that do not compete directly anymore. Also,
the evolution of cells, or more generally hosts that carry the information
present in the genome, may affect the dynamics of populations. While
as a consequence of these limitations the lessons learned from simple

163

164

6 Self-Organization to Criticality

systems of self-replicating strings must not strictly be applicable to all
living systems, it is conceivable that the central trait, self-organization to
criticality, is a universal characteristic of all evolving systems.

6.4 Theories of SOC

From speculations about SOC in the living state, let us return to the math-
ematics of SOC. While we have stressed many times how the avalanches,
the trademark signal of SOC, are indicative of critical phenomena, we
have not attempted to connect the transitions occurring spontaneously
and apparently without the tuning of parameters, to the ordinary phase
transitions of equilibrium statistical physics. Most researchers approach
SOC as a phenomenon intrinsically different from that kind of physics.
On the other hand, there seems to be some evidence that SOC might just
be an equilibrium phase transition in disguise, indicating that there may
be a unified theory of critical phenomena that describes both tuned and
self-tuned transitions at the same time.

The views presented in this section are due to two groups of re-
searchers, one in France led by Didier Sornette [Sornette et al., 1995]
and a group led by J.M. Carlson of UC Santa Barbara [Carlson et al., 1990].
Because both views are, in fact, raising the same point (albeit in a dif-
ferent language), we present them together. In essence, they claim that
SOC is just the manifestation of an unstable critical point that is reached
in certain dynamical systems by tuning the control variable to a small
but positive number. The unstable critical point, in turn, is described by
the usual physics of equilibrium phase transitions. If such a description
of SOC within conventional statistical theory succeeds, we might be one
step closer to a consistent formulation of the physics of the living state.

In this attempt to understand SOC, we witness again the importance
of the concept of slow driving. In essence, the contention is that the
slow driving itself constitutes the tuning of an external parameter. To
understand this in more detail, we must consider the physics of transport.
For sandpile models, this is the transport of grains of sand; in the artificial
living systems we are concerned with, it is the transport of information.
(The transport of information in systems of self-replicating code is taken
up in much more detail in Chapter 10). In any case, the spatial and

6.4 Theories of SOC

temporal aspects of transport need to be studied in order to pin down the
essence of the mysterious self-tuning. .

We start by writing down the reaction-diffusion equation that
underlies dissipative transport. If p(x,t) is the density distribution
(concentration) at point x at time t, its time evolution is given by

4 (t)——a—D()3()+ f p(x, 1) 6.34
prr _ax paxpx: px, . ()

The first term on the righthand side of Eq. (6.34) is the diffusion term,
while the second is the reaction term. The latter adds or subtracts con-
centration, i.e., it describes sources and sinks. The diffusion coefficient
D(p) depends in general on the concentration p, but often is independent
of it. The simplest case, with D(p) = D and f = 0, results in the diffu-
sion equation, a partial differential equation that describes the spatial and
temporal distribution of substances diffusing in space and time:

9 (J\ft)—D82 (x, t) 6.35
8tp' =Pl (6-35)

For example, if we consider the diffusion of particles, p(x, t) might describe
the probability that a particle is found at x at time t. Particles moving
solely according to (6.35) are said to perform a random walk (also known
as Brownian motion). The equation can (for usual boundary conditions)
be solved exactly with

1 x?
px, t) = JanDi exp (—a> . (6.36)

In Fig. 6.12, we show this function at different times as a function of
the distance x. This gives an intuitive feel about how a substance, from a
peaked initial distribution, diffuses out to larger distances with time (see
West, 1995, for an introduction to random walks in biological systems). We
may ask about the mean distance that a particle diffuses out to, starting
from the center x = 0. This is obtained by integrating (6.35) over the
square of the distance from minus to plus infinity, and yields

(x*) = 2Dt (6.37)

the well-known relation for random walks (in one dimension). In Box 6.1
we discuss walks with different statistics that are relevant in natural
systems. In the one-dimensional sandpile, we witness the action of the

165

166

6 Self-Organization to Criticality

0.30

0.25

0.20

p(x.t)

FIGURE 6.12 Solution of the diffusion equation for times t = 1 to t = 5 (with
diffusion coefficient D = 1).

transport equation when a grain of sand that is added, say, at the origin,
ends up at the edge of the pile only to flow off the table. The function
p(x, 1) in this case is just the slope of the pile at x and t. The idea of SOC
is then that p(x, t) will always move to a critical value p.. The continual
addition of sand is not described by just the diffusion equation, but is
specified by a boundary condition for the diffusion equation with f = 0:

E(XQ_ED()E(f) 6.38
Pl T T P (6.38)

0
D[p(ona—ﬁ

=J0, (6.39)

x=

where J(t) represents the flow off of the sand pile. Eq. (6.39) is just a flux
balance condition relating the inflow of sand (via dropping of grains) to
the flow off the table:

)
J() = Dp(L, t)]a—;’

(6.40)
x=L

This conservation law can be obtained by integrating the condition
that the density distribution p(x, t) is normalized. The second boundary
condition (at the right boundary) is just the condition

p(L)=0, (6.41)

which marks the end of the table (open boundary condition).

6.4 Theories of SOC 167

The Gaussian probability distribution for random steps Eq. (6.36) has the
very special property of scaling. If P(x, t) is the probability that a random
variable X(t), which is just the sum of many individual steps X,

X =) X (6.42)
j=1

is between x and x + dx at time ¢, we can easily show that
POM2x, at) = A7V2P(x, 1) (6.43)

i.e., the distribution of steps for the random variable X(t) is the same as for
the variable A~'/2X(A'/2t). It turns out that there are other processes that
have self-similar walks, but the Gaussian walk is the only one that results
in a finite diffusion coefficient. Indeed, consider the walk obtained when
the individual steps X; are drawn from a power-law distribution

-1~
p&x) ~x;'7°, (6.44)

normalized such that Yn(t) = i Zj-v:l X;. One can show that the prob-
ability distribution P; of walk lengths Yy is still scale-invariant [West,
1995:

PL(A By at) = A7 VEP(y, 1) (6.45)

and asymptotically scales just like the probability distribution for the
individual steps (6.44). Such a walk is termed a Lévy flight. Yet, the second
moment of the distribution that defines the flight's diffusion coefficient
diverges (anomalous diffusion):

(Y2(8)) = o0 (6.46)

for B < 2. For B = 2 we reach the only point where (Y?) is finite: this is
just the Gaussian random walk.

BOX 6.1 Lévy Flights

It was noted in [Carlson et al., 1990; Carlson et al., 1993] that Eq. (6.38),
together with the boundary condition (6.39) is solved with a diffusion
coefficient that depends on p as

D(p) ~ (6.47)

1
(0o —pc)?

168

6 Self-Organization to Criticality

with an integer exponent ¢. Thus, as p — p. because of the finite driving
with J(t), the diffusion coefficient would grow and finally diverge, a phe-
nomenon known as singular, or anomalous, diffusion. We can understand
the phenomenon of singular diffusion in sandpiles more intuitively if we
rewrite the flux J as the average number of grains per unit time that flow
off the table, or equivalently (due to grain conservation) as the number
of grains dropped on the pile per unit time

_n
T At

Obviously, in the limit where] — 0 (infinitesimal driving rate), the unit
of time defined by the rate of dropping of grains must go to infinity:

J (6.48)

At = 00 . (6.49)

At the same time, the diffusion coefficient measures how fast particles
diffuse out to infinity, so if the time scale At diverges, this implies that
the diffusion coefficient must diverge. In essence, dropping the grains
infinitely slowly, i.e., letting all avalanches finish before a new one is
started, is equivalent to letting the sand diffuse to infinity (x?) — oo
infinitely fast, or instantaneously.

The previous discussion suggests that the BTW model, with the pro-
tocol for dropping of grains as it is, is not a dynamical model, and the
power laws in avalanche size that we measure appear to be forced. How-
ever, this does not reduce the importance of the model as a paradigm.
Indeed, if the experiments are performed with a finite (but small) rate
], we can still observe the scale-free dynamics. Of course, we realize that
this is going to be the case as long as the temporal scale introduced,]!,
is sufficiently different from the time it takes an avalanche to finish on
average. Of course, the latter should only depend on the system size. The
mystery of the ubiquity of power laws in Nature, then, is just shifted to a
different question: Is there a mechanism that ensures a separation of time
scales in certain dynamical systems occurring naturally? This is a ques-
tion that is still under debate. In order to understand this phenomenon
of self-tuning, we should have a handle on describing what is tuned, and
to what. This is best achieved by borrowing a page from the theory of
critical phenomena: second-order phase transitions in statistical physics.

The following description of the critical behavior of sandpiles is due
to Sornette et al., 1995. It is a complementary description to the singular

6.4 Theories of SOC

FIGURE 6.13 (a) Sandpile in a cylinder with zero applied torque, (b) finite
torque.

diffusion picture outlined above, and is wonderfully intuitive. Imagine
our pile of sand, instead of leaning against a wall as in Fig. 6.1 or being
stationary on a table, to be enclosed in a cylinder that has the ability to
rotate around its axis (see Fig. 6.13). We also imagine that there is a spring
attached to the axis so that we can apply a finite torque T to the cylinder.
Clearly, if the torque is zero, the sandpile is completely stationary. If we
increase the torque, the angle that the sandpile makes with the horizontal
increases linearly with the torque. If T is below a critical value, the slope
of the sandpile will be below its critical value, and no grains will be
dislodged, no sand will flow. If T is larger than the critical value, we
note that the cylinder will un-stick, and the drum will start rolling with
a constant angular velocity. At the same time, sand will flow off the pile
(but onto itself) at a constant rate, and again we are in a stationary state.
If the torque is just at its critical value, we will notice intermittent flows
of sand of all sizes: we have reached the critical state.

In Fig. 6.14, we plot the flow of sand J against the applied torque T.
This is very reminiscent of second-order phase transitions in statistical
physics. Indeed, such a curve is found if the spontaneous magnetization
of a ferromagnet is plotted against temperature. There is a critical tem-
perature (the Curie temperature) at which the magnetization disappears,
just as the flow of sand suddenly disappears if the torque drops below
a critical value. In analogy to these second-order phase transitions, we

169

170

6 Self-Organization to Criticality

P
|

0 T, T

FIGURE 6.14 Sand flow versus applied torque for rotating sandpile.

assume a relation between the flow and the torque of the form
J~IT - T,° (6.50)

with an exponent B to be determined. At the same time, we can define
a correlation length in such systems. It is the maximum distance of cor-
relation between fluctuations, or in the sandpile case the maximum size
avalanche that occurs if T is infinitesimally increased above T.. More
practically, it is the maximum size of an avalanche if the pile is disturbed
by the addition of a single grain/hole pair. According to the theory of
critical phenomena, we should then expect

E~|T-T,", (6.51)

where v is yet another (positive) exponent that can be related to 8. We
will encounter relations of this sort in more detail in our discussion of
percolation in Chapter 7. At this juncture our main point is to make
a connection between the theory of critical phenomena and the SOC
behavior of some dissipative dynamical systems.

In the conventional theory of critical phenomena, we distinguish be-
tween an order parameter, which generally will reflect the phase that
we are currently in, and a control parameter. In magnetic systems, e.g.,
the order parameter is just the magnetization. If it is zero, we are in the
disordered phase; if it is nonvanishing, we are in the ordered phase. The
control parameter that takes us from one phase to the other is in that case
the temperature. By direct analogy we can then identify the order param-

6.4 Theories of SOC

eter and the control parameter for the critical transition in sandpiles. The
order parameter is the flux of sand J, and the critical parameter is the
applied torque T. Note that the torque is directly related to the angle of re-
pose of the pile, as noted earlier. Having identified the control parameter,
let us repeat the question that we asked at the beginning of this chapter.
What forces a self-organized critical system to the critical point? In this
analysis, we see that the decision to wait before an avalanche has finished
results in an infinitesimally small flow. If we therefore force the flow to
vanish, we commensurately force T — T, via Eq. (6.50). Furthermore,
let us consider the diffusion coefficient in this scheme. In the theory
of critical phenomena, the diffusion coefficient is directly related to the
square of the correlation length

D~&, (6.52)

which, as we force T — T, will indeed diverge owing to relation (6.51).
Thus, we return to the conclusion that in systems that display SOC, an
infinitesimal driving rate selects the order parameter to be critical and
causes a divergence in the diffusion coefficient.

Even though it appears as if we have removed some of the layers that
were hiding the true nature of SOC, there are still many unanswered
questions. The preceding still does not constitute a bona fide theory of
SOC, because we can still not be sure when and under what circumstance
a system will display the traits we usually associate with SOC. It is clear,
for example, that there has to be a feedback mechanism between the
order parameter and the control parameter. The nature of this feedback,
and its consequences for the dynamical systems that are subject to it, are
still unclear. Another point that has yet to be clarified is the importance
of metastable states in self-organized criticality. It appears that all SOC
systems seem to jump from one metastable state to the other, and that
the transitions between the states are akin to first-order phase transitions,
initiated by nucleation. Yet, the phenomenology is adequately described
with formulas borrowed from second-order critical phenomena. Also,
the divergence of the diffusion coefficient reminds us that the dynam-
ics in SOC systems may not be Gaussian, but rather of the Lévy type
(see Box 6.1). Considering the pace at which research on SOC is advanc-
ing, however, we expect these issues to be resolved in the not-so-distant
future.

171

172

6 Self-Organization to Criticality

6.5 Overview

The concept of self-organized criticality seems to capturé the essence of
the evolutionary transitions characterizing living and evolving popula-
tions. Self-organization to critigality appears to be the mode of choice of
systems with dissipative transport properties, and which possess many
degenerate, and therefore metastable, fixed points. In such systems, slow
driving will move the dynamics towards a fixed point that is not stable, and
the system responds to the driving with violent avalanches that restore a
fleeting equlibrium. Self-organized criticality in living systems leaves tell-
tale signs in the inter-event-interval distribution of transitions: the time
between evolutionary transitions seems to be distributed in a scale-free
manner, as a power law. All the necessary ingrediends of SOC can be
easily identified: mutations take care of the slow driving, the threshold
parameter is the growth factor of individual genotypes or species, and
the self-organized critical state is characterized by a population of de-
generate genotypes, all of which (or almost all) have a vanishing growth
rate. Avalanches are then produced by mutations that create genotypes
with positive growth rates which, due to the self-organization to vanishing
growth rate of the population, can have catastrophic repercussions reach-
ing all genotypes in the population. These unstable fixed points have been
described by more conventional methods of statistical physics, in terms of
second-order transitions tuned to the critical variable by an infinitesimal
driving rate, as well as by the formalism of anomalous diffusion.

Problems
NOTE: Problems indicated by an asterisk are of higher difficulty.

6.1 A two-dimensional sandpile can be constructed that follows very simple
cellular automata rules. The state of a cell is characterized by the number
of grains of sand in it. The update rule states that if a cell has four or more
grains of sand in it, it loses four, and from each of its four immediate
neighbor cells with four or more grains in it, it gains one. A progression
might therefore look as follows (cells affected by the avalanche are shown
shaded):

174 6 Self-Organization to Criticality

*(b) Calculate the probability for a random walk to return to its starting
point (the return-to-zero probability) as a function of the length of
walk it took to return to zero. Compare this prediction with a numer-
ical simulation of this probability using the program written for (a)
[Adami et al., 1995]. :

6.3 For a distribution N(s) = As™*, show that the coefficient & obtained from
the slope of a log-log plot of this distribution depends on the bin size A as
logA
logs

d=a , (6.55)

where s is the point chosen to extract the slope of the log-log plot.

CHAPTER SEVEN

Percolation

Mavra pei.!
Heracleitus

In this chapter we consider evolution as a dynamical process and focus on
the geometrical and global properties of the underlying landscape without
regard to the actual individuals evolving on it. Evolution appears, from
this point of view, as a complex optimization process on a complicated
landscape. This landscape appears to have very many peaks, leading to a
rugged structure, while the process taking the population from one peak
to the next seems to be nonergodic on the time scales of interest. In
order to gain some insight into the ramifications of such landscapes for
observable statistical measures, we consider an example process from the
study of disordered systems: percolation. As we shall see, there is good
reason to believe that certain aspects of the evolutionary process can be
mapped without difficulty to percolation-type processes.

Percolation is a geometric process, the description of which does not
require the notion of fitness or energy, or more generally, the existence
of a Hamiltonian. Percolation is a static problem, i.e., we are not interested

'Everything flows.

175

176

7 Percolation

in the temporal development of percolation, but only in the properties of
the landscape itself and the distributions it generates. Our main concern,
as far as genetic systems are concerned, will be: “How difficult is it to
traverse genetic space via mutations?” To answer this question, we need
to know how close (or how far) in genetic space, regions are that give risc
to roughly the same phenotype, in other words, we would like to study
the degeneracy of genetic space. This in turn leads us to investigate the
connectedness of this space. For example, we may ask whether there canbe
an evolutionary path that spans the entire diameter of genetic space, and
what the probability is of ever encountering such a path. Alternatively,
we may ask what the probability is that a random genome (a random
point in genetic space) supports self-replication at all, or is part of a
specific species, or part of any other taxonomic group. Such questions
are answered qualitatively by assuming that genomes that pertain to a
specific taxonomic group form clusters in genetic space. Consequently,
we may investigate the distribution of cluster sizes as a function of the
fraction of occupied sites (fraction of genomes sharing a specific trait) for
landscapes of different types. This is the object of percolation theory.

7.1 Site Percolation

Imagine a regular, i.e., Euclidean, lattice of points, each of which can
be occupied or unoccupied. By a random process, let unoccupied sites
be filled with a probability p between 0 and 1. For a sufficiently large
lattice, the ratio between the number of occupied and the total number
of lattice sites will then approach p. After this process, connect all those
occupied sites that are nearest neighbors (only the cardinal directions are
counted here; there can be no diagonal nearest neighbors). This process
of connecting adjacent sites is called site percolation (see Fig. 7.1). There
is an equivalent process, bond percolation, where instead of filling sites,
we distribute bonds between sites with probability p in the lattice. All of
the results that we obtain for site percolation can also be obtained for
bond percolation, and so we shall not consider the latter.

One of the most important concepts of percolation theory is that of the
infinite cluster. If p is sufficiently large, the possibility arises that a clus-
ter forms that spans the entire lattice, i.e., a cluster that connects the left
edge of the lattice with the right one, or the top edge with the bottom one.

7.1 Sitc Percolation

!

i

[o J

1
ol

o

[o

e ® o e o @ o 5 o ¢ @

!

f‘.

s

cripndin
:f:'::? Cleleiiiee
D |

FIGURE 7.1 Two-dimensional lattice of sites filled to fraction p = 0.2. Oc-
cupied sites are indicated by dark dots and connected if they are adjacent.

If such a cluster exists, the system is said to percolate. The appearance of
an infinite cluster changes the properties of the system drastically. If, for
example, empty sites represent insulators and occupied sites represent
electrical conductors, current can start to flow through the lattice only af-
ter the appearance of an infinite cluster. If occupied sites represent pores
in an amorphous medium, fluid can flow through the medium when the
critical occupation probability is reached. At the percolation threshold
(which is just the critical occupation probability), the system undergoes
a geometrical phase transition, known as the percolation transition. The
question we would like to ask is: “At what filling fraction p does the
probability for appearance of an infinite cluster become appreciable?” In
general, this question is hard to answer. This critical probability for perco-
lation p, can be obtained analytically for only a few geometries, but can be
estimated numerically by Monte Carlo simulations with good accuracy.

177

178

7 Percolation

e b

10

/ —
P p

FIGURE 7.2 Probability to obtain an infinite cluster as a function of the
filling fraction p. Solid line: infinite lattice. Dashed line: finite lattice.

As mentioned above, the lattice with p < p, shows qualitatively different
characteristics than with p > p.: the critical probability p, is a genuine
critical point, and the transition from a subcritical to a supercritical lat-
tice shows the signs of a second-order phase transition. Fig. 7.2 shows the
typical dependence of Py (p), of the probability to find an infinite cluster,
on p. We remember this behavior from the dependence of sand flow on
the torque (Chapter 6), or the magnetization on temperature. Note that
the smooth rise of the probability in Fig. 7.2 is due to the finiteness of the
lattice. For an infinite lattice, the probability to obtain an infinite cluster
rises sharply at p,, as indicated by the solid line in Fig. 7.2.

As is the case for thermodynamic systems undergoing second-order
phase transitions, a percolation system at the critical point (i.e., for den-
sity p.) is characterized by an absence of scales. In statistical systems,
this usually means that fluctuations of all sizes at all scales can occur,
just like in the self-organized critical systems. In the latter, it is observed
that the system always returns to such a point. Here, we would like to
investigate percolation systems at or near the critical point, because of
the evidence gathered from SOC systems that this is an interesting fixed
point, reflecting the idea that nature somehow has managed to adjust
the evolutionary landscape in such a way that it is critical: poised at the
critical point. When examining percolation at the critical density, we will
also investigate what happens if the system is somewhat away from the
critical point.

7.2 Cluster Size Distribution

7.2 Cluster Size Distribution

One of the first aspects of percolation systems we turn to is the distribu-
tion of cluster sizes. Let us start by defining the cluster size distribution
at density p, ny(p). In Fig. 7.1, for example, there are 34 clusters of size 1
(i.e., sites that do not strictly form clusters), 10 tlusters of size 2, 4 clusters
of size 3, 3 clusters of size 4, 1 cluster of size 7, and 1 cluster of size 11.
This distribution is shown in Fig. 7.3. For convenience, the cluster size
distribution n; is defined as the number of clusters of size s divided by
the total number of sites N (this is why we are multiplying n, by N in
Fig. 7.3). Then, sns(p) is the probability for a site to belong to a cluster
of size s (it is larger than n, by a factor s, as any of the s sites are cluster
sites), and the sum over those gives the ratio of occupied to total sites,

Y sng = Noee/N (7.1)

which is 96/480 in Fig. 7.1, and happens to be exactly 20 percent of the
total number of sites: the probability with which we filled the lattice. In
general, i.e., for filling fractions closer to the critical one, this relationship
between p and) sn, is more complicated, as we shall see presently.
Armed with these definitions, we can write the probability to observe an
infinite cluster in terms of cluster size distributions. Indeed, for each site
we can determine that it belongs to exactly one of three types: either it
is unoccupied (with probability 1 — p), or, if occupied, it either belongs to

20

FIGURE 7.3 Cluster size distribution for the lattice in Fig. 7.1.

179

180

7 Percolation

a cluster of size s (with probability }__ sn;) or to the infinite cluster. The
latter possibility has probability pP«, i.e., it is the probability that a site
is occupied multiplied by the probability that an infinite cluster exists.
Then, we can write down the sum rule

1-p+) sns+pPe =1, (7.2)
S

which, in turn, implies the strength of the infinite network:

Y, sng
e

Pp=1-—

(7.3)

Let us continue by defining a few more useful quantities. For example,
we can define the mean cluster size

- Zs Szns(p)
T Y sn(p)

which, in turn, can be related to the pair connectedness g,(r). The pair
connectedness is the probability that any two occupied sites that are a
distance r away are in fact part of the same cluster if the lattice is filled
with probability p. Clearly, this is a very important measure. For genetic
landscapes, it would tell us something about the connectedness of the
landscape, i.e., how distant (in genetic space) two genotypes can be while
still belonging to the same (taxonomic) cluster. Intuitively, we expect a
smooth landscape to be infinitely connected, i.e., two genotypes could be
arbitrarily far away in genetic space and still belong to the same cluster.
Put differently, we can expect to find a member of any cluster in any
area of genetic space. On rugged, multi-peaked landscapes, on the other
hand, we expect the opposite. There, the connectivity would be small,
and members of the same cluster would necessarily have to be close ge-
netically in order to belong to the same taxonomic group. In other words,
on rugged landscapes the chance to find a representative of a specific
cluster in an arbitrary region of genetic space would become vanishingly
small. The idea of SOC is that living systems have arranged some sort of
middle ground between these extremes. In percolation systems, we can
dial the connectedness by choosing percolation lattices with different p.
Of course, the self-organized landscapes would then correspond to those
at the critical density p,.

(s) (7.9)

7.3 Percolation in 1D

Mathematically, g,(r) is related to the average cluster size (s) via

PINAGERCION (7.5)

r=0
i.e., if we pick out an arbitrary site and sum over all the sites that it is
connected to, we obtain the average cluster size. It is easy to see that
g(0) = 1 and g,(1) = p. More precisely, g,(r) is a correlation function.
As such, we can express it in terms of a correlation length &(p). This
quantity defines the distance by which the correlation between two sites
has dropped to approximately % (from 1). Then, our representation of the
functional form of the pair connectedness g,(r) is

g =et. (7.6)
Note that the correlation length is implicitly defined as

ZV ngp(r)
Zr gP(r) .

Let us illustrate some of these concepts and definitions by example.

£(p) = (7.7)

7.3 Percolation in 1D

The simplest percolating system is that in one dimension. It is simple
because it is, as one can easily convince oneself, trivial. The critical
density, for example, is p, = 1. Let us calculate the number of clusters
of size s. The probability that s arbitrary sites are occupied is p*. The
probability that a chain ends is 1 —p, and as a consequence the probability
that a site is the end site of a chain of length s is p°(1 — p)?. Thus, in one
dimension,

ns(p) = (1 —p)’p° . (7.8)

Note that because the only possibility to have an infinite cluster is p = 1,
and because p > 1 is inaccessible, there is no phase transition in the one-
dimensional percolation problem. Let us nevertheless investigate this
critical point [Stauffer, 1979]. We do this by expressing all quantities in
terms of the difference p — p., and examine the limit p — p.. For example,

181

182

7 Percolation

in the limit p - 1, we can approximate logp by » — 1 by using the
expansion of the logarithm (valid for p < 1)

. —1)2 -1)3
mw:@—n—@2)+@3)+~u (7.9)
and write
= %P = lime’! = lim &7 . 7.10
p=e lim Jim (7.10)

As a consequence, we write in the vicinity of p. [from Eq. (7.8)]

n,(p) ~ s7*[(p — p.)s|’ e¥ P (7.11)
= sf2), (7.12)

where we introduced the critical parameter r = 2, the scaling function
f(z) = z2¢%, and the variable z = (p — p.)s® with o = 1. Thus, n, for p < p.
decays exponentially with s, and approaches a power law with t = 2
in the vicinity of p.. The functional form (7.12) was chosen to illustrate
this competition between power and exponential decay, even though it
is trivial in the case treated here. However, this functional form turns out
to be quite general, and for fixed dimension d the exponents t and o turn
out to be universal across all percolation models.
In this one-dimensional theory, we can also calculate the average
cluster size

_XSn(p) _1+p
B Zssns(p) B 1 _p'

which clearly diverges as p — 1. Again in order to make contact with the
universal exponents we introduce later, we write this as

=0+pl-p7, (7.14)

with y = 1 in one dimension. To conclude the one-dimensional example,
we write the correlation length £ in terms of a critical exponent v. The
correlation function g,(r) is

S = (s) (7.13)

g =e"", (7.15)

whereas in the 1D model, the probability that an occupied site a distance
r sites away belongs to the same cluster is

&N =p . (7.16)

7.4 Higher-Dimensional Euclidean Lattices

Then, using the expansion (7.9) of the logarithm again, we obtain

Y
“logg, () logp

£= @.-p)~" @ p) (7.17)
with v =1 in this example. Note that we could have obtained this as well
by calculating

— Zr:l ng(r) _ 1 +p

Y800 A-p?’
which is commensurate with Egs. (7.5) and (7.13).

Thus we see that, even though there is no percolation phase transition
in one dimension, the average cluster size as well as the correlation length
diverges in the limit p — p.. This divergent behavior fixes the values of
the critical exponents y and v in one dimension. Furthermore, the cluster
size distribution can be written in the form of a scaling law ny(p) ~ s~*f(2),
with z = 5°(p — p.) defining two further critical exponents t and o. These
exponents can be obtained for arbitrary percolating systems, and we shall
treat the two-dimensional case next.

I (7.18)

7.4 Higher-Dimensional Euclidean Lattices

As we shall see, things become much more complicated in two dimen-
sions. Indeed, we cannot even calculate ng(p) analytically from first
principles. However, the critical exponents do not depend on the ge-
ometry of the lattice at all, but only on its dimensionality. This is the
concept of universality.

For a square lattice, we can only obtain the distributions for small s
analytically. Indeed, it is clear that the distribution of clusters of size 1 is
related to the probability p via

m(p) =p(l —p)*, (7.19)

i.e., the probability that a site is occupied multiplied by the probability
that no adjacent site is occupied. In the same manner, we can obtain the
cluster size distribution for s = 2,

ny(p) = 2p*(1 - p)®. (7.20)

183

184

7 Percolation

In general, we can write
n@) =) g«p’d—p), (7.21)
t

where g is the number of geometrically different cluster configurations
of s sites with perimeter t. While expressions for distributions with higher
s can easily be generated (s = 3 is left as Problem 7.1), no general expres-
sion for the infinite sum is known. However, the previous analysis shows
that the average cluster size (s} admits a series expansion

_Y&ng Yy sin
T Seng

where the first approximation in Eq. (7.22) obtains from Eq. (7.2), and
assuming that P, is small for small p. Such series expansions can be
compared to computer simulations of (s). Not surprisingly, however, the
expansion (7.22) breaks down near p,, and the computer simulations fail
to converge. On the other hand, we have in the 1D example alluded to
the fact that such sums become universal near p,, and therefore their
behavior can be predicted after all.

Let us take a look at this universality, and consider the quantity

F(p) =) _n.(p) . (7.23)

(s) =1+4p+120*+24p° +--. , (7.22)

Universality dictates that this zeroth moment of the cluster size dis-
tribution, which is the total number of clusters, displays power law
dependence near p,:

Fp) ~ lp —pcI*™*, (7.24)

where we defined yet another critical exponent a. While there seems to
be an explosion of such exponents, we shall see shortly that there are
relations between them, and that only a few are independent.

Via a numerical experiment, we can plot the logarithm of F(p) versus
the logarithm of p — p, to test universality, and extract the slope (2 — @)
for small values of |p — p.|. In thermodynamical systems, the exponent
2 —« is associated to the critical behavior of the free energy. This exponent
is not independent of the ones previously introduced, and we note here
without proof that @ = 28+ 2y — 2.

The first moment of the cluster size distribution is related to the prob-
ability to find an infinite cluster, as can be seen from Eq. (7.3). This

7.5 Percolation on the Bethe Lattice

quantity also serves as an order parameter, i.e., a macroscopic observable
that allows us to determine the phase the system is in. In magnetic sys-
tems, for example, the order parameter is the bulk magnetization, and the
critical parameter the temperature. The disordered phase is recognized
by a vanishing magnetization (at temperatures larger than the critical
temperature T;). Below T., the magnetization is non-zero due to the
spontaneous alignment of the individual spins that make up the magnet,
leading to an ordered state [see also the discussion following Eq. (6.50)].
The critical behavior of the order parameter near p, is described by the
critical exponent 8

Pu(p) ~ (0 —pc)’ . (7-25)

Of course the second moment of the size distribution is related to the
average size of the clusters, and scales with critical exponent y:

S=()~lp—pl7. (7.26)

Again, there is an analogous quantity in thermodynamic phase transitions
called the susceptibility. To complete the exposition of critical exponents,
we mention the behavior of the correlation length £, given by

§~lp—pl™, (7.27)

as anticipated in the 1D example.

An important aspect of percolation theory is the property of scaling,
which relates properties of the system at the critical point to properties
away from it. Before we enter this discussion, we analyze an important
geometry of percolation systems, which just like the one-dimensional
system, allows an analytic approach.

7.5 Percolation on the Bethe Lattice

The Bethe lattice (also called the Cayley tree) represents a percolation
problem that can be solved rigorously. Furthermore, it undergoes a true
phase transition (i.e., p, < 1) and thus the regime above p. can be
examined as well.

The Bethe lattice is obtained by constructing a tree from a central
site, by connecting z branches to the site, and by ending each branch

185

186

7 Percolation

FIGURE 7.4 Bethe lattice with z = 3.

with a site. From each site thus formed, z — 1 branches emanate, such
that each site in the lattice is connected to z other ones (see Fig. 7.4).
There are no loops in the system, as any two sites are connected by only
one path. As the Euclidean distance r is meaningless in this geometry, we
introduce the chemical distance ¢ between two sites instead. For example,
the chemical distance between the central site and a site on the £th shell
is exactly £. The shells are indicated by dashed circles in Fig. 7.4. Let us
examine the dimensionality of this lattice. In a d-dimensional Euclidean
lattice, the number of points inside a volume of radius R increases as
V ~ R whereas the number of sites on the surface grows like § ~ R41.
Consequently, for d-dimensional Euclidean lattices we find the surface
to volume relation

S~ viTi (7.28)

If we write down the corresponding relation for the Bethe lattice, we find,
in the limit of an infinite number of shells,

S~V, (7.29)

7.5 Percolation on the Bethe Lattice

due to the exponential increase of sites with ¢. This allows us to
conclude that the Bethe lattice in effect represents the case of an infinite-

dimensional Euclidean lattice (d — 00). As we shall see later, this makes .

the Bethe lattice the ideal candidate to model the genetic space spanned
by very long genomes.

Let us calculate the critical exponents for the Bethe lattice. We start
by calculating the correlation function g,(£) as a function of the distance
between sites £. We remind the reader that this function represents the
probability that two sites that are a distance £ apart in the lattice actually
belong to the same cluster. In order for this to happen here, all £ — 1 sites
that separate the two sites have to be occupied, as there is only one path
between any two sites. Let us count the number of sites contained inside
the ¢th shell. Going from shell to shell, the number of sites is multiplied
by z — 1; thus, counting the initial site, we obtain

N(®) = z(z - 1)*! . (7.30)

Because the sites are occupied with probability p, the probability that all
sites are occupied in between two sites separated by £ — 1 shells is

g€ =z2z-1)""p". (7.31)

Note that this reduces to the correlation function of the linear chain if
z = 2, except for a factor 2 due to £ playing the role of a radius rather
than a diameter. Eq. (7.31) immediately now delivers to us the critical
probability! Indeed, if there is an infinite cluster, this correlation function
must diverge with £, whereas it should decay exponentially if p < p,:

gp(8) = gtloBPED), (7.32)

Thus, the critical point must occur where p(z — 1) = 1, as this is where
the logarithm changes sign. We therefore deduce that

1
z—1

Pc= (7.33)

for the Bethe lattice of connectivity z.
Armed with g,(r) and p., we can immediately calculate a number of
interesting quantities. For example, the correlation length is obtained via

_ pIP ezgp(e) _ bc+p

2
£= > =1 8p(O) _pc(Pc—P)z'

(7.34)

187

188

7 Percolation

Note that this does not allow us to deduce that v = 1, as the correlation
function is expressed in terms of £ rather than the Epclidean distance
r. However, a simple argument allows us to relate the distance r for an
infinite dimensional lattice to £ in the Bethe lattice. Indeed, as correlations
are extremely weak in the very high-dimensional lattices, the average
distance (chemically) behaves much like a random walk, and thus

r~t. (7.35)

Consequently, as the correlation function expressed in terms of the Eu-
clidean distance is just the square root of the correlation length expressed
in chemical distance, the critical exponent of the correlation length in
the Bethe lattice is v = , rather than v = 1. The average size of clusters
follows using previous results as

1+p .
§= =p.—— .36
1+ 2 &) Pe =) (7.36)
which yields y = 1.

Let us now consider ny(p), the probability that any site on the Bethe
lattice belongs to a cluster of size s. We take our hint from Eq. (7.21), but
realize that unlike for d-dimensional Euclidean lattices, we can derive a
concise expression for the perimeter of a cluster of s-sites on the Bethe
lattice. Clearly, a one-cluster is always surrounded by z sites, whereas
a two-cluster is surrounded by z + (z — 2) perimeter sites. In general, a
cluster of s sites always has z — 2 more perimeter sites than a cluster of
s — 1 sites. If we write t(s) for the number of perimeter sites surrounding
a cluster of s sites, we have

t(s)=z+(z-2)s—-1), (7.37)
and we find for n, on the Bethe lattice
ns(p) = g p* (1 — p)*tE s, (7.38)

where g is the number of configurations for an s-site cluster. We can now
take this expression, which holds for all p, and investigate its behavior
close to the critical probability p.. Doing this (we skip the details of this
expansion), we find that

ns(p) ~ ns(p)fs(p) ® — po, (7.39)

where
filp) ~ e3P, (7.40)

7.6 Scaling Theory

The function n(p,) is, just as we derived in one-dimensional percolation,
a power law, and we can assume

nepe) ~s7° . (7.31)

As we know the average size exactly (Eq. 7.36), we can use this to fix the
exponent t. Using (7.39) to calculate the average size and comparing to
(7.36) yields

S~ |p—pl ", (7.42)

or consequently
y=@-1/0. (7.43)
With y = 1 and o = }, we find ultimately r = 2. Finally, we would

like to obtain 8, which is related to the critical behavior of the order
parameter (here the probability to find an infinite cluster). As we have an
exact expression relating P, and ns(p), Eq. (7.3), we can obtain another
relation between the scaling exponents, this time yielding

(t—2)
o

p= (7.44)

and B = 1 for the Bethe lattice. It is worth reiterating that the critical
exponents that we obtained for the Bethe lattice are independent of z,
the connectivity of the lattice, even though the critical probability p,.
depends on z. This independence is a reflection of the universality of
critical phenomena.

7.6 Scaling Theory

In previous sections we witnessed the paramount importance of the clus-
ter size distribution ny(p), which would allow us to calculate not only the
probability for an infinite cluster P, but also the mean cluster size S
as well as the correlation length £. Only in the one-dimensional and the
infinite-dimensional (the Bethe lattice) problem could we calculate this
quantity exactly. Here, we are going to see how much information can be
extracted about critical indices without knowing ng exactly.

189

190

7 Percolation

The main idea of the scaling theory is that the functional form for
ns, obtained, for example, for the Bethe lattice {see Eq. (7.39)], in fact
holds not only close to the critical point p, but also away from it. Such an
assumption should of course be verified directly. Before we do this, let
us reformulate the assumption of scaling in a different manner. We have
seen that the different moments of n, scale in a universal manner near
p.- This can be explained if the sums that enter in these moments are
dominated by a particular characteristic cluster size s;. The characteristic
cluster size should not be mistaken for the average cluster size. Rather,
the idea of the characteristic cluster size is that for any sum

L=)_ s*n(p) = sin,, () , (7.45)

s; gives the main contribution to it, and clusters with s < s; effectively do
not contribute. Clusters with s > s; are exponentially rare, and therefore
also do not contribute significantly. In this case, it is easy to see that the
moment I; should only depend on the ratio s/s;. At the same time, the
characteristic size s; should also exhibit scaling behavior, of the form

sg~ Ip—pel™'. (7.46)

Note that the definition of the scaling exponent o in this way (we have
encountered it briefly when considering the 1D problem) is mainly his-
torical. The important point is that for positive o, the characteristic cluster
size diverges at the critical point, such that the ratio s/s; vanishes. We can
then posit that the cluster-size distribution is given by its behavior at the
critical point, n;(p.;), multiplied by a function that only depends on the
ratio s/sg, f(s/sg), provided f(0) = 1:

ns(p) = ngpc)fis/sg) . (7.47)

This assumption can be tested, as armed with Eq. (7.46) we can deduce
the function f by numerical experiments. Indeed, if Eq. (7.47) holds, we
ought to find that

ns(p)
ns(pc)
i.e., that if the ratio ny(p)/ns(p.) is plotted for different values of s and

different values of p — p,, the points should all lie on the same curve that
defines the function f, if plotted against the product s(p — p.)!/°. In other

=f (S(p - pc)"”) , (7.48)

7.6 Scaling Theory

words, the function f would, if the scaling hypothesis holds, depend only
on the product of s and p—p,, rather than on each of them independently,
as would be the general case. Such a numerical analysis is presented in
Fig. 7.5 for a regular two-dimensional lattice. There, (p — p.)s’ is plotted
vs. ng(p)/ns(p.), for different s and p — p., and the points all lie reasonably
close to a universal function, corroborating the scaling assumption. The
power law scaling at the critical point

ns(p:) ~

7" (7.49)

can also be verified numerically. In Fig. 7.6 we show the result of such a
numerical experiment for a regular Euclidean lattice of 1000 x 1000 sites,
where the power law is obeyed over several orders of magnitude, and the
critical exponent can therefore be extracted with high accuracy.

The scaling law (7.48) can in principle not be valid far away from
the critical point, as is obvious from remembering our derivation of the
scaling function in one dimension, Eq. (7.12). For regimes further away
from the critical point, it has been suggested that a universal law of the

7 T T T T) |
ne) ¢ L ; 035]
B . 0.40
n(p) 5 | Y + 0.45 | |
PR . 0.50
4 L g{': ~ .« 055
$ = 0.60
3t 4 . 0.65
. » 0.70
2 r + 075 | T
> 0.80
T { Loss|]
0 L 1 L &—-*
-20 -15 -10 =05 0.0 0.5 1.0
(p—pJ)s

FIGURE 7.5 Number of clusters of size s (normalized to the value at the
critical point), as a function of the scaling variable (p — p;)s® on a 1000 x 1000
square lattice. Included are clusters of size 5 < s < 100 for filling fractions from
p = 0.35 to p = 0.85, and with o = 36/91.

191

192

7 Percolation

n(s)

1

10

10°

-1

10

1072

107

-4

10

10

107

-7

10

1

0

10

10

S

10

2

10°

FIGURE 7.6 Number of clusters of size s at p = p, = 0.5927, in two dimen-
sions on a 1000 x 1000 lattice. The power law exponent is fitted with t = 1.94,

not far from the theoretical value r = 187/91.

form

might hold, with 6 = 1 in one dimension, and § = 2 for d = 3.

ng(p) ~ s ?const®

(p<pCrs_) w)

(7.50)

In Table 7.1, we list the currently known values for the critical expo-
nents for different dimensions, which are obtained analytically wherever
possible or otherwise by numerical experiments.

TABLE 7.1 Universal critical exponents for lattices of different dimensions
(from Campi, 1987).

Exponent d=1 d=2 d=3 d=o00
B — 5/36 0.45 1
% 1 43/18 1.74 1
v 1 4/3 0.88 1/2
o 1 36/91 0.46 1/2
T 2 187/91 2.20 5/2

7.7 Percolation and Evolution

7.7 Percolation and Evolution

In this section we speculate on the application of percolation theory to
extract some information about the underlying fitness landscape of living
and evolving systems from measurable distributions.

As mentioned at the beginning of this chapter, it is one of the more
intriguing speculations that life self-organizes toward a critical state. One
possible way to achieve this is to arrange for genotypic space to be occu-
pied at a critical level, i.e., for the ratio of the number of (local) fitness
maxima to total possible genomes to be given by the critical density
for such a lattice. In this case, clusters of similar genomes would not
be controlled by any scale, and evolution can proceed on such a lattice
in an optimal way. There is some evidence [Burlando, 1990; Burlando,
1993] that taxonomic abundance distributions (which can be interpreted
as cluster size distributions) show power-law behavior over many scales,
but conclusive data is difficult to obtain. Here we would like to investi-
gate the predictions of a theory that assumes that evolution is much like
percolation on a Bethe lattice, where the connectivity of the lattice is
controlled by the length of the genome.

Ordinary genetic space can be viewed as a Euclidean hypercube (or
Hamming space: a space where the distance between two points is given
by the number of mutations that takes one into the other), and where
therefore the number of nearest neighbors of each genome is given by
the number of possible one-step mutations. Clearly, the connectivity of
such a space depends crucially on what is considered a one-step mutation.
Here, we shall make the (unrealistic) simplification of bit-flip mutations
only, such that all mutational neighbors are also neighbors in Hamming
space. In truth, many mutations are of the crossover type, where entire
sections of code are interchanged, and insertions and deletions occur as
frequently. Such mutations cover vast distances in Hamming space, and
as such give rise to new clusters in this model. In principle, it is possible to
construct a space where all one-step mutations are also genetic neighbors,
but we do not deem it necessary for outlining the main geometric aspects
of the model.

At first sight there appears to be a fundamental difference between
the occupation of sites in a percolation model and genetic evolution. In
percolation, the occupation of a site is an event that is entirely proba-

193

194

7 Percolation

bilistic, while in evolution two principles are at work. On the one hand,
the occupation of a site is due to random mutation of an existing geno-
type, and therefore is probabilistic. However, sites near to an occupied
site have an exponentially larger chance of being occupied than sites that
are far from occupied sites. Thus, the distribution of clusters throughout
genetic space will be maximally uneven. The reason for this is, as you
will probably recognize, the lack of ergodicity of the evolutionary process
in genetic space. As usual, we sidestep this problem by considering only
those pieces of genetic space that have any appreciable concentration of
occupied sites, i.e., we only consider regions where there are clusters,
and ignore the (vast majority) of space where no clusters can be found at
all. In this reduced space, the process of evolution can be considered as
quasiergodic, and we may move on with our analysis of evolution from
the point of view of percolation theory.

Let us first determine the geometry of the lattice we are dealing with.
For purpose of definiteness, let us consider the space spanned by self-
replicating genomes of length ¢, made from an alphabet of size D. Then,
every genotype has exactly (D — 1)¢£ mutational neighbors, and the Ham-
ming space then is a Euclidean lattice of dimension (D — 1){. For any
reasonable genome length, this dimension is high enough that there is
an exponentially small chance for any evolutionary path to return to a
site, i.e., we can ignore loops in such a space. Thus, the space is effec-
tively infinite-dimensional, and we may use a Bethe lattice of connectivity
z = (D —1){ as a replacement. On this lattice, we know the analytic form
of the cluster size distribution and its moments, and we can therefore
test the hypothesis that evolution is akin to a percolation process on a
Bethe lattice directly. However, there is one major unknown: what is the
occupation probability? We know from first principles [see Eq. (7.33)] that
in this model the critical occupation probability is

1 1
z—1 (D-1)¢-1

D= ~ 1 . (7.51)
¢
But is the occupation probability in a typical evolving and adapting system
above, below, or exactly at the critical threshold? Is there a mechanism
that selects the occupation probability in a universal manner, or is it
different in different regions of genetic space? In order to answer some
of these questions, we must turn to Artificial Life models such as avida to
obtain hints, as it is difficult to obtain data with adequate precision from

7.7 Percolation and Evolution

real systems. But first let us examine some of the predictions. Scaling
theory on the Bethe lattice provides us with an expression of the cluster
size distribution at and slightly away from the critical threshold. Indeed,
for p. ~ €', we expect

ns(p) ~ s™% exp (—(p ! S Z)Zs) (7.52)

T (D-1

and an average size of the clusters

S= ! B 7.53
= (s) (m—p) (7.53)

The latter equation is of little use to determine p, as it is determined by
the difference of two very small quantities:

1 1
Tm-nE S
Similarly, we cannot use the relation to check the critical exponent
(¥ = 1), as we can only dial ¢, but not p. Eq. (7.52) is more promising.
For one thing, we can measure the cluster size distribution and check
whether it is a power law, and what is the power law exponent. Such an
investigation could reveal, at least approximately, whether percolation on
a Bethe lattice is an analogy worth pursuing or whether the model fails
completely. At the next step, we would look into violations of power law
scaling that are introduced by an exponential factor in (7.52). Of course,
we first need to find a criterion by which to identify clusters in real or
artificially living systems in the first place. This was alluded to in the
introduction to this chapter, and we figured there that we should look at
taxonomic hierarchies to define clusters.

The lowest taxonomic cluster in the usual hierarchy is either the
species or the subspecies. Thus, a cluster could be formed by counting the
number of different genotypes (each genotype corresponding to a site in
genetic space) a species has given rise to, from the time that the species
was formed up to its extinction. Similarly, one may go up higher in the
taxonomic hierarchy and consider a cluster as a genus, and determine the
size of the cluster as the number of species that the genus has given rise
to. Such data was collected early on by Willis (1922), and more recently
by Burlando (cited above, see also the discussion in [Adami et al., 1995]).
In the statistical analysis of cluster sizes taken throughout the taxonomic
hierarchy, throughout the cataloged flora and fauna, as well as from the

p (7.54)

195

196

7 Percolation

paleontological record, Burlando finds exponents ranging from 1.5 to 2.5
with error bars large enough such that no firm determination can be
made from this data set alone. However, he also saw no trend that would
indicate a difference in power law exponents throughout the taxonomic
system, which led him to suggest-that a fractal geometry was dominating
the process of evolution. We take from this analysis the suggestion that
the choice of taxonomic level may not affect the analysis, and first check
the simplest taxonomic abundance distribution that can be obtained in
avida, that of species. Abundance distributions of genotypes are measured
in Chapter 9 later, but such distributions are not strictly cluster-size dis-
tributions in the sense of percolation theory, as the members of a cluster
do not occupy distinct sites. The exponent of the species abundance dis-
tribution, which measures the number of genotypes contained in each
species, can be taken as a first hint at critical exponents. The concept
of species in avida is explained in more detail in Section 9.4. A straight-
forward experiment running avida for a reasonable amount of time and
counting the total number of genotypes produced by each species pro-
duces Fig. 7.7. The distribution shows what appears to be a power law,

Species abundance

10 T T
10* | ° . -
z 0t §
Z I "o,]
nﬂq’ﬂb
10 b Ry i
101 N 1 w

10' 10°

S

FIGURE 7.7 Number of clusters of species with s genotypes, obtained in a
run lasting T = 50,000 updates at low mutation rate (R = 0.03).

7.8 Overview

but with an exponential component that cannot be fitted with a single
exponential.? Also, the distribution seems to fall off with an exponent
smaller than the one predicted from percolation on the Bethe lattice,
raising the possibility that the current species definition is not very close
to a cluster in percolating systems. For the future, it is important to
examine whether this exponential component at large s is due to an
intrinsic scale of the system (such as being away from the critical point),
or whether it is due solely to finite-size effects: here the finite time that
we ran the simulation, or the finite size of the population. This can only
be ascertained by making runs with different population sizes, and which
are run for different lengths of time. It is clear from Fig. 7.7, however,
that a simple power law with exponential cutoff does not fit the observed
cluster size distribution, warranting a more thorough investigation of this
problem.

7.8 Overview

Percolation is the simplest system that displays geometrical phase transi-
tions of second order. The concepts of cluster-size and critical parameters
are defined with ease, even though the system is not simple analytically.
The chapter on SOC hinted at the possibility that living systems self-
organize to a critical state that displays scale-free distributions in physical
observables. In percolation theory, we can investigate this state by tun-
ing to the critical occupation probability p., and calculating universal
exponents that occur in such systems. As a bonus, it is conceivable that
evolutionary clusters can be viewed as percolation clusters in a very high-
dimensional genotype space. A space with similar geometry is that of the
Bethe lattice, for which percolation can be solved exactly. Thus, it appears
possible that the subject of percolation on the Bethe lattice may provide
insight about the distribution of taxonomic clusters and the approach to
criticality.

?Quite possibly this is a multi-fractal distribution (several overlapping power laws) which
points to much more complicated dynamics, presumably due to the fact that species of
different ¢ contribute to the distribution.

197

198 7 Percolation

Problems

7.1 For a regular square lattice, derive the expected number of clusters of
size three as a function of the’occupation probability p.

7.2 For a 64 x 64 regular (square) lattice, determine (computationally) the
critical occupation probability p, for the emergence of an infinite clus-
ter. This is accomplished by choosing random configurations at fixed p
often enough to obtain the fraction of cases in which an infinite cluster
emerged, and repeating for different p. In order to get a good estimate for
the critical filling fraction, it is advised to check p's close to the expected
one. Note that the estimate only becomes precise in the limit of very
large lattices, which is not the case here. Instead, find the p at which the
probability to find an infinite cluster rises to 0.5.

7.3 Derive Eq. (7.39) from Eq. (7.38) in the limit p — p..

CHAPTER EIGHT

Fitness Landscapes

For the things of this world cannot be made known without a
knowledge of mathematics.
Roger Bacon, 1267

In this chapter we intend to look at the process of evolution from yet
another angle, using the concept of the fitness landscape. Such an analysis
is not without problems: there are a number of researchers who object
to the notion that a fitness landscape for real evolving populations exists
at all, never mind whether the process of evolution can be understood
as adaptation to such an underlying landscape. Nevertheless, and keep-
ing a number of caveats in mind, we introduce the concept of fitness
landscapes and methods and tools to study them, in order to obtain more
insight into one of the questions we have been asking repeatedly, and that
we have been addressing from different perspectives. In the language of
this chapter the question is: Are natural fitness landscapes fractal?

The concept of the fitness landscape was introduced by the eminent
mathematical biologist Sewall Wright [Wright, 1932] long before the deci-
phering of the genetic code. It has proved to be one of the most powerful
concepts in evolutionary theory by virtue of its imagery (the idea of
mountainous terrain, valleys, ridges, and peaks) and by its mathematical
accessibility. A drawback of the formalism as presented here is that it

199

200

8 Fitness Landscapcs

does not provide for a mechanism by which the population that evolves
on the landscape feeds back on it, i.e., helps form the landscape. This
feature of coevolution appears to be crucial for understanding real evolv-
ing populations. Whether or not an analysis of evolution in terms of
fitness landscapes is directly applicable to real living systems, it certainly
provides a fertile mathematical framework in which to cast very simple
living systems, and certainly simple artificial ones where coevolution can
be neglected.

8.1 Theoretical Formulation

The idea of fitness landscapes turns out to be just an extension of the per-
colation approach outlined in the previous chapter. There, each site in the
metric space (a space where a distance measure between sites is defined)
is assigned either one of two possible values—occupied or unoccupied—
in a probabilistic manner. As an obvious extension, we might attempt to
assign a real number to each site representing some intrinsic property
of it, and more generally speak of a real-valued function that returns the
fitness, given the coordinates of the site. The attentive reader realizes
that in doing this, we move from a purely geometric discussion of the un-
derlying space to a dynamic one: the function defined can play the role
of a Hamiltonian, or more generally a Lyapunov function. Such a func-
tion provides a ranking between sites that determines their occupation
probability according to the functional value. A simple example of such a
function is the potential energy of a spherical ball in a bowl. The lowest
point in the bowl confers the lowest energy to the ball, and thus this
lowest point represents its preferred coordinates. If the ball occupies a
higher position it will, in time, approach the preferred one: the minimum.
The temporal dynamics of the ball is then inexorably controlled by the
approach to the minimum. While this seems very simplistic as opposed
to the problem of evolution, we can imagine a bowl filled with syrup, and
a labyrinth of mazes on the inner surface of the bowl, such that the mass
point has to sometimes move upwards in order to reach the point where
it takes on the lowest potential energy. We can also imagine that, if the
bowl is not shaken often enough, the mass point could get stuck at an
intermediate ridge on the surface of the bowl. The shaking, of course, is
an agent of noise that can dislodge balls that get stuck. Furthermore, we

8.1 Theoretical Formulation

can imagine that the surface of the bowl is not fixed, but actually moves

and changes, so that a ball that is stuck can get loose because the ridge”

that was preventing its descent to lower energies disappears. Instead of
this energy function that is minimized in the dynamics just described,
we consider a fitness function that is maximized, and ask about what type
of landscape gives rise to which dynamical behavior.

We begin by an elementary description of binary sequence space. The
size of the space is obviously determined by the length of the sequence,
and we depict the sequence space for binary strings of length 1, 2, 3,
and 4 in Fig. 8.1. The vertices of these hypercubes are shaded in such
a manner that sites with the largest mutational distance have the most
contrast. Each vertex of the binary hypercube can be represented by a

000 001

1101

FIGURE 8.1 Hypercubes representing sequence space for binary strings of
length 1 to 4. Sites that have the same distance from a reference point (say,
the vertex 0000 in the four-dimensional hypercube), are shaded in the same
manner.

201

202

8 Fitness Landscapes

vector
X= (xllx2ix3l"'lx£)l (81)

where x; takes on the values 0 or 1 and £ is the length of the string. More
generally, we can define hypercubes formed from any alphabet, so that
x; € {A, B,C, ...} with alphabet size D. On this space, which is generally
known as a vector space, we can define a real function f(x), which is the
fitness function:

f:V>R
x— flx) .

All of this chapter is concerned with properties of the function f, which
defines the type of landscape in which the evolution on V takes place. For
example, we may want to know what is the average value of the fitness.
In principle, this can be obtained by summing the fitness function over
all sequences in the space:

NS
) = = 2 fx, 82)

g i=1
where N, is the number of sequences N, = DF. For small sequences
this is not difficult; we have seen, however, that for realistic sequence
spaces it is impossible to obtain this average, simply because the number
of sequences in the space is too large. The same is true for other global
observables of this function, such as (f?) and the variance o? = (f?) — (f)2.
We shall see that the only measure that can realistically be extracted from
effectively infinite landscapes are correlation functions on the landscape.
Before we define those, we need to introduce the concept of stochastic

landscapes.

It is clear from a moment's reflection that the idea that a specific se-
quence can unambiguously be mapped to a fitness is overly simplistic.
Rather, the sequence will result in a core fitness for the organism that
harbors it, while the final survival of the particular member will be sub-
ject to a random component. This idea is central to the construction of
stochastic landscapes, where a function f(x;) is generated by drawing it
from a pool of 1andscapes, which are distributed according to a probability
distribution. Each individual landscape is fixed, however. Then, we can
define averages over ensembles of landscapes rather than averaging over

8.1 Theoretical Formulation

all sequences. For example, we can define the expectation value of f for
sequence x; (where i ranges from 1 to D")

E[f(x)]

as the average over the value of f(x;) over all the landscapes in the
ensemble. Similarly, we can then define the variance of the fitness as

var{fix;)] = E[fx;)*] — E[f(x:)] - (8.3)

With these tools, we can define the correlation function of the landscape
defined by f by imagining a random walk I" of length n in sequence space,
that starts at sequence x;

F == {xt,x,.,_],...,xH.,,] . (8.4)
To this walk I' corresponds a walk in fitness

AD) = {fx), fxe), ... flxegn)) - (8.5)
Consider then the autocorrelation function R(s) defined by

R(s) = E[f(2:+5)f(x)] — E[f(xe45)] E[fix)]
Vvar{f(xess)] var(f(x:)] '

It is easy to see that R(s) is normalized [R(s = 0) = 1], and decays for
s > 0. It represents the correlation between the fitness of two sequences
x; and x,,; separated by s mutational steps. Again, the general idea here
is that if the fitness landscape is reasonably smooth, two sequences that
are separated by only a few mutations should be reasonably close in
fitness. A rugged landscape, on the other hand, will be characterized by
a correlation function that drops precipitously after only a few steps in
the walk. Then, sequences just a few mutations away may turn out to be
very different in fitness. It is this characterization in terms of ruggedness
in which we are interested.

A simplification of Eq. (8.6) occurs for isotropic landscapes. In such
landscapes the expectation value of the fitness E[f] does not depend on
the precise location in the landscape, i.e.,

E[fix)] ~ E[f(x5)] =~ E[f(x0)] (X # x5) . 8.7)
With the isotropy condition (8.7), Eq. (8.6) simplifies to

_ Efftxo)fixs)] — Effixo)
var{f(xo)] '

(8.6)

R(s) (8.8)

203

204

8 Fitness Landscapes

We should remember at this point that all averages are performed for spe-
cific sequences xy, . . ., &5, with the averages taken over fitnesses obtained
by polling from a pool of landscapes. Let us define another measure of
correlation for a single fixed land$cape, averaging over all possible walks
that can connect sequences xg and x;

_ fxo)fixs)) — {flx0))?
a?[f(x)))

There is a wide range of landscapes for which the correlation functions
(8.8) and (8.9) agree. Such landscapes are called self-averaging, i.e.,

R(s)

(8.9)

R(s) = R(s) . (8.10)

In the following, we shall focus only on self-averaging landscapes, where
we also have

NS
E[fixo)] = (f) = NL Y fix) . (8.11)
g i=1

For self-averaging landscapes we can define yet another correlation
function which, rather than depending on the length of a walk between
two sequences, is defined in terms of the Hamming distance d, i.e., the
shortest mutational walk, between the sequences. Thus, we define

_ (fofy))a — ()2
- o’If] '
where A = d(x,y) = d denotes the Hamming distance between x and y.
The notation (...)4 reminds us that we are averaging over all sequences
in the space which are a Hamming distance d apart. Naturally, we expect
a relation to hold between p(d) and R(s). (The latter will be denoted just
R(s) in the future, as we assume that the landscapes we are dealing with
are self-averaging.) Denote by ¢ the probability that a walk of s steps
ends at a sequence that is a (genetic) distance d away from the starting
sequence. Then

p(d

(8.12)

R(s) =) _ ¢upd), (8.13)
d=1

that is, the correlation between sequences that are connected by s random
steps is obtained by weighting the correlation function of two sequences

8.2 Example Landscapes

that are a distance d apart with the probability that a walk of s steps takes
you to a sequence a distance d away, and summing over all possible d.
For a genetic space of very high dimension (hypercubes spanned by
very long sequences), a walk of length s will almost always lead to a
sequence approximately s mutational steps away, i.e., few walks backtrack
genetically. In this case

$sa X 85 (8.14)

and the two measures of correlation approximately agree. Note that for
a genetic space that has the topology of the Bethe lattice, Eq. (8.14) is
exact. For some other landscapes, ¢4 can be obtained recursively (see,
e.g., Weinberger and Stadler, 1993 and Problem 8.1).

The autocorrelation function p(d) provides, if it can be measured,
important information about the dynamics of the adaptation process on
the landscape. Let us consider a number of examples in the next section.

8.2 Example Landscapes

One of the simplest landscapes to construct is that of independent Gaus-
sian variables. For such a landscape, the fitness f(x) is a random variable,
independent of any other neighboring string y. Such a landscape is
unrealistically rugged, as we can convince ourselves easily. Indeed, if
neighboring strings have independent fitnesses, the autocorrelation func-
tion p(d) must decay abruptly from one to zero by just taking one step,
ie.,

p(0) =1, (1) =0. (8.15)

Such a model describes disordered media rather than evolution, and
is known as the random-energy model [Derrida, 1981]. We call such
landscapes “Derrida” landscapes.

From the most rugged of all landscapes, let us move to smoother ones.
An important class of landscapes is represented by so-called AR(1) land-
scapes. They are characterized by a single scale: the correlation parameter
p. For such landscapes one finds that the fitness of one site depends only
on the fitness of a nearest neighbor. In other words, for a process that
takes genotype x into genotype y, the fitnesses are connected by

205

206

8 Fitness Landscapes

) = pfix) + f ' (8.16)

where Af is a stochastic variable drawn independently from the same
Gaussian distribution for »# and y. Stochastic processes for which the
value of the function at y only depends on the value of the function at
x are called Markov processes. A random walk is the simplest Markov
process: the position of the walker at the next point in time only depends
on the position at the previous time (and of course the random variable
which determines the next move). Clearly, for a random walk on an AR(1)
landscape, we find for the autocorrelation function

R(s)=p°=e%* (8.17)

where we defined the correlation length

1

£= .
[log pl

(8.18)

Thus we see that indeed p (or §) is the single fundamental descriptive
parameter of the AR(1) landscape. In such landscapes, sequences that are
more than & steps apart are effectively uncorrelated. Thus, the correlation
length £ defines an effective radius of influence between sequences. This
radius was zero for the Derrida landscape. We also note that the correla-
tion function in this case is exponential and not a power law. Thus, we
do not expcct scale-free behavior unless £ is proportional to the size (i.e.,
maximal diameter) of the landscape. We shall come back to this point
below.

The next example we describe is Kauffman’s N — k model [Kauffman
and Levin, 1987; Kauffman and Johnsen, 1991]. It is also defined on a
Boolean hypercube (i.e., the genomes are binary sequences of length N),
but their fitness function depends on a parameter k that allows us to tune
the landscape from rugged to smooth. As such, it is a useful mathematical
tool to investigate a range of landscapes.

Imagine a fitness function that assigns a fitness f; to each bit x; on a
string of length N, and where the fitness of the string is obtained by just
averaging over the contribution of each bit. If the f; are obtained from a
random probabilistic distribution (e.g., a uniform random number on the
interval [0,1]), we obtain a relatively smooth dependence of the fitness
on the genotype, as the flipping of one bit alters the fitness only by an
amount of order 1/N. Accordingly, the autocorrelation function for such

8.2 Example Landscapes

a landscape is

pd) =1-— % : (8.19)

This is the N — k model for k = 0, as k denotes the number of neighboring
bits that the fitness f; depends on, and we just stipulated that the f; are
obtained randomly; we may draw for example, fix; = 0) = 0.45 and
fixs = 1) = 0.12 independently.

For a k = 2 landscape, the fitness of each bit x; depends on two
other bits on the string, for example its nearest two neighbors. (Other
models can be constructed where the fitness of each bit depends on k
random neighbors, but we shall not consider these here.) If the fitness of
a bit depends on its two nearest neighbors, we need to draw a random
number for eight different possible neighborhoods just to define the fitness
contribution of one bit. An example is given in Table 8.1 below, where we
consider the case N = 8 and k = 2.

TABLE 8.1 Example fitness contributions for an N — k model with N = 8
and k = 2 (from Weinberger and Stadler, 1993), showing the tables used for
computing the fitness of the fifth and sixth sites. The numbers in the column
labeled “Contrib” (below) are drawn randomly, whereas the f(x;) depend on
the specific sequence.

Bit 1 2 3 4 5 6 7 8
Symbol 1 0 1 1 0 1 0 1
f(x) 0.39 0.46 0.91 0.18 0.73 0.29 0.84 0.70

Fitness of string: f{10110101) = § }"; fix;) = 0.56

Table for computing contribution of bit positions

Bit position 5 Bit position 6
Bit 4 Bit 5 Bit 6 Contrib. Bit 5 Bit 6 Bit 7 Contrib.
0 0 0 0.32 0 0 0 0.99
0 0 1 0.21 0 0 1 0.10
0 1 0 0.19 0 1 0 0.29
0 1 1 0.93 0 1 1 0.22
1 0 0 0.87 1 0 0 0.86
1 0 1 0.73 1 0 1 0.39
1 1 0 0.64 1 1 0 0.48
1 1 1 0.88 1 1 1 0.61

207

208

8 Fitness Landscapes

Note that to assign nearest neighbors to boundary sites, you can choose
peniodic boundary conditions, i.e., you can assume that the sites are ar-
ranged on a circle, such that the first and the eighth site are neighbors in
this example. .

On the other extreme, when choosing k = N — 1, we find the Derrida
landscape. In that case, a single mutation changes the fitness of the string
to a completely independent random number, and there is no correlation
between adjacent genotypes. The correlation function can be obtained
by considering the probability that a string survives d mutations (which
act on different bits, as otherwise the d mutations would not result in a
string at distance d). Here is the result (see Problem 8.2):

_(n—k=1)! (n—d)!
D= T

(8.20)

This function is shown in Fig. 8.2 for N = 8 and k-values ranging from
0 to 4. Note that for k = 0 we recover Eq. 8.19, while for k = N — 1 the
function vanishes at d = 1 (not shown).

p(d)

FIGURE 8.2 Autocorrelation function p(d) for the N—k model (nearest
neighbors or random neighbors) for N =8 and k=0 — 4.

8.3 Fractal Landscapes

8.3 Fractal Landscapes

Before formally discussing the concept of fractality, or self-similarity with
respect to landscapes, let us take an intuitive look at the idea.

When imagining ourselves performing an adaptive walk in an infinite
landscape, we can assume that we would only be able to see the local
properties of the landscape, which may change as we climb any peak
that we see. Of course this implies that we cannot, from our vantage
point, see all the peaks of the landscape; neither can we see how high the
peak is that we are about to climb. However, we do notice which way is
uphill (and how steep the climb is), and we also see how many different
paths are leading uphill. One way to classify the local properties of the
landscape, then, would be to always keep track of the number of ways
that lead uphill, as well as what the local slope is. Imagine a landscape
that is of infinite extent spatially, or equivalently, one that does not have
any boundaries. If there is one global maximum in this landscape, it is
clear that, no matter where our journey starts, we are one day going to
end up at this peak, and the local properties there will be very different
from those observed during the ascent. Indeed, the number of ways to
move uphill in that case is zero. Such landscapes, which we shall term
finite landscapes (even though their spatial extent, or more precisely the
number of different points x in the landscape, may be infinite) have the
property that the number of ways uphill does not stay constant as we
climb the peaks. Rather, the number of ways to improve oneself typically
decreases by a constant factor each time a new (local) maximum is found.
Thus, since the local properties change while we move around, such
landscapes can hardly be called self-similar.

Typically, in a search process, the precision with which we examine
a landscape’s potential for improvement depends on the level of height
(or fitness) already achieved. We may, for example, start to look for a
maximum very broadly, and then when found, move towards it with
more and more delicate and detailed moves. In a manner of speaking, we
increase the resolution of our “radar” the closer we get to the goal. In finite
landscapes, the landscape changes as the resolution is increased, until it
looks (at the highest resolution) completely flat. Quite the contrary in self-
similar landscapes: the higher the resolution we use to probe for further
ways uphill, the more such ways we find! Such self-similar or fractal
landscapes are thus infinite; there can never be a maximum, because

209

210

8 Fitness Landscapes

the achievable height depends on the resolution with which we choose
to examine our local landscape. In fractal landscapes, then, there is no
scale that sets the average distance between peaks in the landscape (as
expected), and in fact the only scales that could be present in realistic
fractal landscapes should be those related to the size of the system and
the distance between two adjacent vectors x and y, sometimes called the
lattice constant.

At this point it appears opportune to emphasize that, unlike in the
percolation process outlined in the previous chapter, in the discussion
of fitness landscapes the geometry of the space is as important as the
process that takes place on it. Indeed, when we define the landscape
to be a metric space, we assume that there is a means to measure the
distance between any two points on the landscape. Apart from the usual
Hamming distance, the process itself might impose a distance measure
by declaring two points as neighbors if they can be reached by a single
mutational event. As mutational events in genetic landscapes include
cross-overs, such a measure can in principle make the landscape quite
complicated, and diffusion on them may take on an anomalous character,
i.e., be different from the usual Gaussian diffusion process.

Let us attempt to capture the idea of fractal landscapes mathemati-
cally. The concept of fractal landscapes was introduced almost a decade
ago by Sorkin (1988). He defined a landscape to be a fractal of type h if

((fa) — fly)?a ~ d*, (8.21)

i.e., if the variance of the difference between the fitnesses of two config-
urations scales with their genetic distance. Here, we define A = d(x,y)
to be the metric distance between two strings. This could be the usual
Hamming distance, or, in genetic landscapes, the smallest number of op-
erations (including maybe insertions and deletions) necessary to obtain y
from x. In the following, we shall refer to d(x, y) simply as the genetic dis-
tance without specifying its construction. We will discuss different such
measures in Chapter 9.

Sorkin's definition seems to connect with our intuitive discussion
earlier: in such a situation there is no scale that sets the difference in
fitness between two sequences, except for their genetic distance (and the
size of the landscape as we shall see later). Let us rewrite this criterion

8.3 Fractal Landscapes

in terms of the autocorrelation function. We find then that, since

((fx) — RY)*)a

= =2(1 — p(d)), (8.22)
we can rewrite Sorkin's criterion as
1 - p(d) ~d*. (8.23)

Let us examine a few examples and discover what the fractal type h
determines.

First, we examine the AR(1) landscape introduced earlier. There, we
found that approximately

p(d) ~ e, (8.24)

where £ is the correlation length of the landscape. For distances much
smaller than this length,

pd) ~1- g +0(@/97%), (8.25)
i.e., for such small distances the term of the order (d?/£%) can be ignored,
and all AR(1) landscapes then look like fractals of type h = 1/2. Such
landscapes are also sometimes called trivial fractals, as they are the kind
that arise in a random walk problem (see the discussion of scaling in
random walks in Box 6.1 and below). In order to discuss what happens
at larger distances, it is convenient to rescale the genetic distance by the
maximal genetic distance in the landscape, i.e., the size, or diameter of the
landscape L. Thus, we introduce the new distance d= d/L, and define
the correlation function in terms of this distance r(a), which can then be
written as

rd)=1- %Zi + O(@) . (8.26)

Now we can see that an AR(1) landscape is a fractal of type h = 1/2
if and only if its correlation length is proportional to the diameter of the
landscape, as only then can the higher order terms in the sum be ignored.
In a fractal of type h = 1, for example, the autocorrelation function does
not have a term linearin d, i.e.,

pd) =1—pd* + 0(d*) . (8.27)

211

212

8 Fitness Landscapes

Clearly, we are more interested in nontrivial fractals (h # 1/2), and
we may ask what are the conditions to achieve such a landscape.

Let us now examine the Kauffman landscape. From the autocorrela-
tion function (8.20) we find, to lowest order in d,

d)y=1 d_y~_d + O (d%) (8.28
ka - N L N —-m] .)
so that in the limit of large N
k+1
onk(d) > 1 — d(—;—) +0O(d) . (8.29)

Note that for the Kauffman landscape, the sum is already given in terms
of the genetic distance divided by the diameter of the landscape, as no
strings can have a higher genetic distance than N. The k = 0 landscape
is a trivial fractal of type h = 1/2, as all higher-order terms in the sum
(8.29) vanish. Even though for higher k there is always a linear term in
the sum (8.29), it is misleading to conclude that the landscape remains
h = 1/2. Indeed, as the sum converges less and less well for higher k,
the fractality of the landscape is less easy to determine. Yet, as it is clear
that the Kauffman landscape is finite (one string is always the best in
the landscape), the Kauffman landscape can only be fractal locally, i.e.,
for small d. Here we have put our finger on the single most important
property a fractal landscape must have. Anytime the string length is fixed,
or cannot exceed a certain value, the landscape will necessarily become
simple once the highest level of fitness is reached. Indeed, in this case
the landscape will appear flat: as no improvement can be achieved, the
only nondeleterious mutations will be neutral ones. We shall be able to
witness this aspect in a discussion of RNA landscapes in Section 8.5. Still,
as long as the system is in a stage where the current string length is
much smaller than the maximal one, the landscape may appear fractal,
as the defining scale (the maximal genetic distance L—(or N in the N —k
model) has not yet been reached. We will return to this particular point
when we discuss the fitness landscapes of the artificial chemistry in avida
in Section 8.6. Before this, as a last theoretical example, let us construct
a fitness landscape based on the Lévy-flight paradigm: self-similar jumps
that occur with a probability that is inversely proportional to the size of
the jump, and where the average squared fitness diverges in the limit of
infinite landscapes.

8.4 Diffusive and Nondiffusive Processes

8.4 Diffusive and Nondiffusive Processes

As discussed earlier, in a conventional random landscape we can imagine
the fitness f(x) to be drawn from a probability distribution that is Gaussian,
whereas the fitness of a walk is

F() =) Afix))., (8.30)

J=1
For such a Gaussian random walk, the distribution of the single steps Af
scales in the same manner as the distribution of the whole walk F, i.e., if
P(F, n) is the probability that in n steps we have achieved fitness F, then

P(A'2F, an) = A7V2P(F, n), (8.31)

with a scaling parameter A. In this case, the second moment of the distri-
bution of F's, which is directly related to the correlation function (if we
assume that (F) = 0) scales like the number of steps taken,

(F® ~Dn, (8.32)

where D is a constant that sets the scale of the process. In earlier chapters
we saw that it plays the role of a diffusion coefficient. Since, as we have
seen, in high-dimensional landscapes the number of steps taken is just
the genetic distance [cf. Eq. (8.14)], we note once again that we are dealing
with a random fractal of type h = 1/2. This is the case of normal diffusion.
Anomalous diffusion (which we have encountered earlier in Section 6.4)
is said to occur if the second moment of the walk either does not scale
linearly with the number of steps taken (or, if a step is taken in unit time,
does not scale linearly with time)

(F(t)F(0)) = 2D ¢ (8.33)

with h # 1/2, or if the second moment simply does not exist. The latter
can occur if the probability to take a single step is unnormalizable, which
can occur if we draw fitnesses (or step-sizes) from a distribution of the
power-law type:

p(Af) ~ (Af)7F (8.34)

where 8 = 2 corresponds to the Gaussian (h = 1/2) fractal (see, e.g.,
Klafter et al., 1996). For general 8, this implies that the second moment

213

214

8 Fitness Landscapes

of the fitness scales as

(F%) ~n?h, (8.35)
where now

h="-L (8.36)

In such a manner, thus, we can construct landscapes with arbitrary h.
Note that for infinite landscapes (no maximal string length), we cannot
distinguish whether anomalous diffusion is due to a power law distribu-
tion in jump sizes or due to a power law distribution in waiting-times
between jumps.

Intuitively, landscapes with higher h can be thought of as leading to
persistent random walks. As compared to the random walk with h = 1/2,
in a walk with a higher h the walker has a higher tendency to persist
in the direction taken, whereas walks with h < 1/2 are anti-persistent. In
evolution, we expect a walker to locally perform an h = 1/2 walk. The
crossover operation, however, can throw the walker far away in genetic
space, leading to anomalous diffusion and the fractal character of the
landscape. Fig. 8.3 shows an example of such a walk, where the walker
is trapped locally for some time and performs a Gaussian random walk

FIGURE 8.3 Lévy flight in two dimensions. The turning points of the walk
tend to cluster in self-similar patterns.

8.5 RNA Landscapes

there, but intermittently performs large jumps, with probability inversely
proportional to the length of the jump. As a consequence, the mean-
square displacement of the walker diverges. This is a familiar concept that
we encountered in the chapter on self-organized criticality. Applied to the
discussion of landscapes, fractality implies that inside any radius around
a particular sequence we must be able to find maxima of any height if we
are willing to adjust the scale finely enough (in the language of evolution:
wait long enough). There is no doubt that this is an idealized concept,
but one that is familiar from the physics of disordered media, especially
the so-called spin-glasses. We shall return to discuss landscapes when we
investigate learning in avida and the approach to the error-threshold.

8.5 RNA Landscapes

In this section we discuss an example of a realistic landscape: the
mapping between nucleic acid chains and folded proteins. Such a map-
ping can be seen as occurring between symbolic sequences, such as
ACCUCGCCCUUU... , and secondary structures, such as the tRNA de-
picted in Fig. 8.4. In the folding algorithm of the Vienna group [Hofacker
et al.], the secondary structure is computed from the sequence using
procedures based on thermodynamics. As the secondary structure cov-
ers most of the free energy of the tertiary structure (the energy required
to unfold it), the folding algorithm can be used as a predictor of the se-
quence’s fitness. In the absence of a cellular metabolism to determine
fitness (as the RNA strings do not self-replicate), in the experiments de-
scribed below [Huynen et al.,, 1996] two different measures were tested
to determine the value of a particular structure: one in which the struc-
ture’s stability alone is the determining factor (i.e., the structure with the
highest free energy is declared the “winner”), and one where a particular
type of secondary structure (here, the cloverleaf structure of tRNA) is de-
clared optimal, and any candidate’s structure is compared to the target to
determine how close it is. Two different questions were addressed in the
context of fitness landscapes, namely “How frequent is an ‘optimal’ struc-
ture in this landscape?” and “What is the dynamics of the adaptive process
that has the optimal structure as its endpoint?” Naturally, these questions

215

216

8 Fitness Landscapes

reveal instantly that the landscape considered cannot be globally fractal,
as there is a global optimum. This can be traced back to the require-
ment of keeping the sequence length constant in these experiments (here
v = 76), which makes the analysis much easier. As remarked earlier, no
landscape with a fixed length requirement can ever be globally fractal.
In this landscape defined on symbolic strings of length 76, and an
alphabet {G,C,A U}, the first experiment concerned neutral diffusion on a
flat landscape. This was achieved by taking the target sequence (which
folds into the above-mentioned cloverleaf depicted in Fig. 8.4) and creat-
ing a population of 1000 copies of it. Note that the mapping of sequence
into structure is many-to-one, i.e., many sequences fold into the same
structure. Then, as the population is subjected to mutations, it diversifies
while still keeping the target structure. The fitness of the strings is mea-
sured by a tree-editing procedure, where the folded structure of a candidate
string is compared to the target structure, and the number of editing steps
necessary to obtain the target from the candidate is termed the distance
d between the two. Each candidate string is then replicated according to
a fitness function. In the case at hand, the replication rate of a string a

AGc
G U
u Uu
Cc-G
U-A
C-G
G- CyYg
U-GC G AAc
saccucgecchy T Geyogte
5 GCGGGAAy, ACGACCUUG
G—C
C-G
U- A
AC—GA
G U
Uyc®

FIGURE 8.4 Secondary structure of the tRNA molecule, obtained from fold-
ing the symbolic sequence. The secondary structure can subsequently be
folded into a tertiary structure.

8.5 RNA Landscapes

distance d from the target is (arbitrarily) taken to be
A(d) = 1.06'4679, (8.37)

Clearly, any substitutions in the genetic string that leave the folded struc-
ture zero steps away from the target one will be replicated at the same rate
as the original string. During the neutral walk, the original genotype of the
ancestral string is soon lost, and the initially homogeneous population of
strings diffuses in genetic space (see Fig. 8.5). Soon, indeed, the original
genotype disappears from the population, while the phenotype, i.e., the
target structure, is unchanged. For this population, then, the landscape
appears flat: there is no possibility for improvement, but the entire land-
scape can still be traversed by the genotypes, i.e., the genetic distance of
the final genotype can be maximally far away from the ancestral one. This
seems to suggest that in such smooth landscapes, any structure can be
found arbitrarily close to a starting one: an important ingredient in fractal

0 20 40 60
1.5 ~— —-——| 40
g Py 130
@ - y)
E10- e e !
8 N -
o p
g ~ g
° e - 20
g | -7
g i ,/|
€05
(]
= - 10
g ‘ |
%%.0 0.5 10"

Time (arbitrary units)

FIGURE 8.5 Mean square displacement of sequences, as measured by cal-
culating the barycentric average (see Huynen et al., 1996) of the population,
from the ancestral sequence. The curve is roughly linear in time (at least at
small times, curve I, lower scale) which confirms that Gaussian diffusion is
taking place in genetic space.

217

218

8 Fitness Landscapes

landscapes. In this particular experiment, this property of fractal land-
scapes was tested in a situation that was manifestly nonfractal (by keeping
the string length constant). Nevertheless, this observation may point to
the possibility that, if the string length is unrestricted, realistic RNA land-
scapes in realistic environments (a functioning cell-cycle) may indeed be
fractal.

In another experiment, Huynen et al. started with a population of ran-
dom sequences, and watched how the fitness of the population improved
as the structure came closer and closer to the target cloverleaf (Fig. 8.6).
Like in avida, the adaptation process is characterized by long periods
of stasis, in which the population performs an approximately Gaussian
random walk, punctuated by intermittent adaptation events, that can
be likened to the Lévy flights of Fig. 8.3. Because of the finite popula-
tion, equilibration occurs rapidly, and the population can freeze into a
metastable state that is close to the target. Still, for large genetic distances
(structures far away from the optimum), the adaptation curves seem
to display a Devil’s staircase character, that we identified with a power
law distribution of waiting times in Chapter 6. Such a distribution may

Average distance 1o iargel
8

10 <

0 300 500 %00
Time (asbitrary units)

FIGURE 8.6 Evolutionary optimization of a population of random RNA

strings toward the target structure with a mutation probability of p = 0.001

and 1000 strings in the population. Due to structural constraints, the exact
target structure is not usually reached in these experiments.

8.6 Fitness Landscape in avida

signal a fractal landscape, as it leads to anomalous diffusion. Because of
the finiteness of the landscape, however, this hypothesis cannot be tested
here for the same reason that the experiments covered in Chapter 6 were
inconclusive. .

In the next section, we describe qualitatively the fitness landscape of
the avida system, in order to gauge whether the inherent dynamics may
give rise to a fractal fitness landscape. Because the length of strings in
avida is not fixed, a major necessary condition for a fractal landscape is
met.

8.6 Fitness Landscape in avida

Finally, at the end of this chapter we are prepared to discuss the fitness
landscape of the avida world as a paradigm for landscapes created by the
artificial chemistry of populations of self-replicating code. We shall see
that what type of landscape emerges is to a large extent in the hands of the
user: we can construct flat landscapes and we can construct complicated
ones. In the end, it is the amount of information that is present in the
environment in which the population evolves that decides whether the
landscape is asymptotically flat or fractal.

Quite generally, we remark that in avida there is effectively no con-
straint on the length of the code, except for a minimal length requirement
(which is trivial, as the smallest length for self-replicating programs with
the default instruction set is eleven), and a maximal length require-
ment that simply assures that no string can attempt to allocate all of
the computer’'s memory for itself. For this very reason then, evolution is
open-ended in avida: anytime a fit string is found, there is no guarantee that
there is not a fitter string that just happens to be much longer and there-
fore can encode a smarter algorithm. In practice, if there is no information
in the landscape (we shall make this statement more precise below), this
open endedness is merely academic. For example, it appears possible
to design the best self-replicator (the one with the shortest gestation
time) for a given instruction set within avida, and the chance that a much
longer creature could beat such a designed program appears remote. So,
in this simplified situation the avida landscape appears definitely finite

219

220

8 Fitness Landscapes

{itness

A

-1 i 1 1

10

[o] 5000 10000 15000 20000 25000 30000
update
40 T T T T T
30 \ 4
c r—
= R i condin lguamebinbba
o220
o
10 | b
0 1 s — 1 1
0 5000 10000 15000 20000 25000 30000
update

FIGURE 8.7 Fitness (upper panel) and length (lower panel) of the most
abundant (the dominating) genotype in a typical avida population of 3600
strings at a mutation rate R = 0.02 in a landscape where only replication is of
benefit. The inset shows the fitness for the first 2000 updates.

and far from fractal. An example of adaptation on this flat landscape
is shown in Fig. 8.7, where we show the fitness of the most abundant
genotype (the quasispecies in the language of Eigen), and the sequence
length of this dominating genotype. After an initial period of adaptation
where the gestation time is decreased (and consequently the fitness is in-
creased), all adaptive activity has stopped after about 20,000 updates, and
the population has settled into what appears to be a relative optimum.
Note that during the adaptive phase, the length of the dominant repli-
cator usually shrinks to about 15-20 (20 in the run showed in Fig. 8.7).
Still, in this landscape fitness does not explicitly depend on length, in
other words, while the gestation time of a string is roughly linear in

8.6 Fitness Landscape in avida

length, the allocated time is also, such that evolution is size-neutral. This
point will be discussed in more detail in the next chapters. The reason that
the length of the strings consistently shrinks in this scenario is probably
to evade the relatively high copy mutation rate of 2 percent. The optimal
length appears to be around fourteen, and the typical length achieved in
a flat landscape (15-18) is not far from that. The important point here is
that the population explored the local confines of the landscape relatively
quickly (note that during that time, the adaptive process looks vaguely
fractal; see the inset in Fig. 8.7) and then hovers around the optimum: a
fixed, flat landscape.

This situation is dramatically changed if the landscape offers some-
thing to be discovered. In avida, we can provide extra CPU time for strings
with certain computational capabilities, which in our artificial chem-
istry paradigm can be likened to strings with certain (chemical) catalytic
capabilities. Mimicking the speed-up of the metabolism of a cell that dis-
covered the right genetic code to catalyze chemical reactions (so that it
can extract more energy from its surroundings), we speed up the CPU of
a program that discovered how to perform computations on numbers that
are available to them. As we give out the rewards independently of the
code used to accomplish the computation, there are many sequences that
can trigger a specific reward, and the number of solutions can become
dense in the number of possible strings, a key requirement, as we shall
see soon. In a landscape where simple logical operations are rewarded,
a typical run (started with the same initial conditions as Fig. 8.7) shows
adaptive activity taking place for a long time, as new bonuses can be
discovered building on the computational capabilities already achieved
(Fig. 8.8). Note also that in such a run, the length of the strings increases
dramatically, as this much memory is needed to store all the information
acquired from the environment (cf. the discussion in Chapter 5). Still,
the moment the population has discovered all the “reactions” that we
give bonuses for, the landscape may become effectively flat, and little
improvement is possible. Thus, the landscape in avida can only appear
fractal for times shorter than the time it takes to discover all of the infor-
mation that is coded in the environment. From Fig. 8.8 we may surmise
that the landscape will always appear fractal as long as the population
has not exhausted the information present in the environment. This is
only partially correct, as it is possible to construct landscapes that are
full of information, but where the maxima are so sparse (so rare) that

221

222

8 Fitmess Landscapes

fitness

3

Y BV WY Y Y BV Y Y I |

10000 15000 20000
update

20 —_ 1 —l

[o] 5000 10000 15000 20000
update

FIGURE 8.8 Fitness (upper panel) and length (lower panel) of the most
abundant (the dominating) genotype in an information-rich landscape.

the population has no chance to ever find them. In this case, such a
landscape will appear flat. We will be discussing the requirements for
discoverable peaks (and consequently a fractal landscape) in much more
detail in Chapter 11.

8.7 Overview

In this chapter we have looked at different ways to classify fitness land-
scapes. The examples we have looked at included random landscapes,
where no two points have any correlation whatsoever as far as fitness is

Problems

concerned, over smooth landscapes, to so-called AR(1) landscapes, which
are characterized by a correlation-length that sets the scale for the aver-
age distance between maxima. Two explicit examples that we examined
were the Kauffman landscape, which may have a fractal appearance for
large k and small fitness, as well as RNA landscapes, which have similar
characteristics.)

Finally, we introduced the concept of fractal landscapes intuitively
and mathematically. Such landscapes are not characterized by a scale,
and therefore any fitness can be reached from any point within a radius
of sufficient genetic distance. As a consequence, such landscapes must
be infinite (for infinitely long strings). Conversely, any landscape that
describes fixed length strings cannot be globally fractal, but it may be
locally so, for strings that are small compared to the maximal length.
Finally, we have introduced the landscape in avida and found that it has
the potential for being a fractal landscape, but that this depends on the
amount of information stored in the landscape (which the strings can
discover) as well as how the information is stored. If exponentially few
(isolated) points in the landscape have a high fitness, the population
cannot discover them, and such a landscape may appear essentially flat
rather than fractal.

Problems

NOTE: Problems indicated by an asterisk are of higher difficulty.

8.1 (a) Derive a recursion relation for the probability ¢ that a random walk
of length s on a Boolean hypercube (see Fig. 8.1) of dimension £ leads
to a sequence separated by a Hamming distance d, by writing ¢y in
terms of g at s — 1.

*(b) What is this relation for arbitrary alphabet-size D?

8.2 Prove Eq. (8.20). Note that the result quoted in the Appendix of Fontana et
al., 1993, is incorrect except for the expression for the “AN" model, which
is equivalent.

223

CHAPTER NINE

Experiments with avida

Measure what is measurable, and make measurable what is not so.
Galileo Galilei

After having treated adaptation and evolution of simple living systems
from a more theoretical point of view in the previous chapters, we now
turn to the kind of experiments that can be performed with avida to test
some of the hypotheses advanced there.

Avida implements a simple artificial chemistry in which the molecules
are computer programs, and the chemical action of these molecules is
obtained by executing those programs. The geometry of the world that
these programs live in is flexible (for details involving the operation of
and options in avida, consult the Avida User's Manual in the Appendix),
but for the sake of definiteness will be fixed here to be a two-dimensional
regular lattice with wrapping boundary conditions. The size of the lattice
itself (i.e., the size of the population) is arbitrary, but for practical reasons
should be kept below 10°. A version of avida that runs on parallel super-
computers is called sanda, and allows populations of up to 10® programs
(see Chu and Adami, 1997). In the following, we shall learn about the
main design parameters of avida and how to configure the software in or-
der to perform dedicated experiments. Finally, we describe the concept
of species in avida, and simple experiments related to speciation.

225

226

9 Experiments with avida

9.1 Choice of Chemistry

The dynamics of a typical run with avida depend strongly on a number
of important settings that determine the character of the world. One of
these is certainly the mutation rate and the type of mutations that the
population is subject to; the other is the fitness landscape. Beyond those,
the dynamics are controlled by the “physics” and the low-level “chemistry”
that is being chosen. Some of the physics, for example, is determined by
the mechanism by which cells are replaced in the population (the method
of selection), while the chemistry is selected by choosing an instruction
set. This choice may be likened to choosing a set of amino acids to be the
basis of the biochemistry, and it is obvious that such a choice crucially
determines the kind of chemistry. Ideally, we would like the choice of
natural building blocks to be emergent itself, rather than being chosen
in an arbitrary manner by the user. This would perhaps be accomplished
by starting a simulation with a large number of very different, possibly
redundant, instructions, and no self-replicating ancestors. Then, in the
manner of the amoeba experiments reported on in Chapter 2, we might
hope to see simple self-replicating programs emerge from nonreplicating
ones, and witness the origin of life in the avida world. Such a natural
ancestor would then be used to seed a population, and after a while
we might examine this population to see which (and how many) of the
initially available instructions are being used, and which are not.

While compelling, this is a difficult experiment to carry out. The first
step, choosing a large number of basic instructions, may seem daunting
already (as we should hope to have a universal set of instructions for
the emergent populations to choose from). It pales in difficulty to step
two, however. Indeed, if we restrict the number of possible instructions
to 24 (the default instruction-set in avida), it is known that the small-
est self-replicator (albeit not a very efficient one), is of length eleven.
In this class, there are about 1.5 x 105, i.e., over one-and-a-half million
billion different programs, while there are probably only a handful of self-
replicators. Thus, these constitute the proverbial needle-in-the-haystack,
and will be extremely rare to emerge in a random search. This difficulty
seems to only be compounded by working with a starting set of, say, one
hundred different instructions, and programs of arbitrary length. Still,
such an experiment is not without hope. Indeed, as taught to us by the
earlier attempts, notably by Rasmussen and by Pargellis (see Chapter 2),
the spontaneous emergence of a short self-replicator need not be the only

9.1 Choice of Chemistry

avenue to Artificial Life. Indeed, it has been argued in the framework of
an artificial chemistry based on logical expressions, whose chemistry i§
based on replacement rules (the AlChemy project of Fontana, based on the
A-calculus, see Fontana and Buss, 1994) that the origin of life may have
involved, at first, a self-maintaining, rather thdn self-replicating, popula-
tion. Indeed, this was also Rasmussen’s ansatz, and it is also explicit in
the theory of the Hypercycle of Eigen and Schuster [Eigen and Schuster,
1979), as well as Kauffman's theory of autocatalytic networks (see Kauff-
man, 1993). Thus, we may hope that there is a path to self-replication that
involves groups of programs that are self-maintaining (on the level of the
group rather than the individual), and that will give rise to replicators
and then self-replicators. Still, even if such a feat could be accomplished,
it will be difficult to apply the lessons learned in the artificial medium to
the natural world. Indeed, before such an investigation becomes credible,
we need to prove the universality of life, i.e., we need to extricate those
aspects of living systems that are independent of the substrate from those
that clearly are, before rushing to apply the lessons learned in Artificial
Life to the natural world. This is the goal of most of the initial experiments
performed with avida.

Foregoing experiments to determine an emergent instruction set, we
have to settle on one that appears promising enough to result in a rich
chemistry with powerful instructions, while still maintaining compu-
tation universality and flexibility. The tradeoff between the power of
single instructions and the universality of the set has been discussed in
Chapter 2. Clearly, an instruction such as replicate would be very ben-
eficial and powerful; it cannot, however, be used for any other purpose
and universality might be jeopardized. The insistence on computation-
universality of the instruction set is largely based on the intuition that
the set of amino acids that the cellular metabolism is based upon is
computation-universal. From an abstract point of view, this means that
one should be able to build a universal computer out of the polypeptides
that can be made from the 20 amino acids that form the instruction-set
of natural life. From an intuitive point of view, this just means that al-
most anything can be made out of these building blocks. It can be argued
that, because a select group of biological organisms can perform abstract
calculations in their head, they can therefore simulate Turing machines
without difficulty. This would then constitute a proof that DNA is Turing-
complete. More seriously, there may be good reasons to believe that any
universality in life is just a reflection of Turing universality, mirroring

227

228

9 Experiments with avida

perhaps von Neumann'’s old idea that systems can evolve towards higher
complexity only if the system is complex enough, just as the Principia
Mathematica are complex enough. We shall leave such speculation be-
hind and instead start with the assumption that a Turing-complete set of
instructions is a necessary ingredient in a nontrivial implementation of
life. The emphasis here is on non-trivial, as Pargellis's experiments have
shown that there are non-universal implementations that can give rise to
self-replicating programs. However, a proof that Artificial Life based on
this chemistry shares features with the universal implementations (as far
as dynamics and adaptability are concerned), does not as yet exist.

The universality of the default instruction-set in avida hinges on a
number of crucial features of the CPU on which the instructions are
executed. Largely, the CPU mimics the design of ordinary CPUs, albeit
in extreme simplification. Consequently, the basic underlying computa-
tions are arithmetic on registers, shuffling of numbers between register
and stacks, as well as conditional program flow. To maintain strict Tur-
ing universality, the avida CPU has the capability of using two stacks,
which allows a simulation of the arbitrarily long tape of the universal
Turing machine. Experience has shown, however, that the dual-stack ca-
pability is not crucial for the emergence of simple arithmetic and logical
operations, but may become so if sorting, or any other input-intensive
operation, is required to accomplish a task. While we defer a detailed ex-
position of the precise functionality of each instruction to the Appendix
(Section A.5), we should briefly address their chemistry here. In Table 9.1
we list the instructions that constitute the default set for the avida software
that accompanies this book. Most experiments are carried out with this
particular set (any exceptions are explicitly noted).

TABLE 9.1 Mnemonic of the 24 instructions available in the avida
distribution as default.

Inst. Inst. Inst. Inst.
nop-A call Pop allocate
nop-B return push divide
nop C shift-r add get

if-n-eq shift-1 sub put
jump-£ inc nand search-f
jump-b dec copy search-b

9.1 Choice of Chemistry

The no-operation (no-op) instructions nop-A, etc., play a central role
in this set, similar but not identical to the no-ops in tierra. While the no-
ops are used in pattern-based addressing, as was Ray’s nop0 and nopl
(see Chapter 2), they serve an additional function in avida. No-ops can
modify the chemistry of a preceding instsuction in a definite way, and
as a consequence give rise to a more flexible, and therefore redundant,
instruction set. Consider for example the pop instruction, which pops the
top of the stack (as the switch-stack command is disabled in the default
set, only one stack is active here) into one of the three registers AX, BX,
or CX that the CPU has at its disposition. If no no-op is following the
pop, the contents of the stack will be popped into register BX. However,
a nop-A following pop will result in the top of the stack heing popped
into register AX, and so on. The same is true for the push, as well as all
operations that involve arithmetic or conditional decisions on registers.
As a consequence, most operations can be written in many different ways:
the chemistry is redundant and flexible.

Important for the self-replicative capability of the set are the in-
structions copy, allocate, and divide. The copy command copies an
instruction from one memory location to another, more specifically from
the location pointed to by the BX register to the location pointed to by the
location AX instructions away from BX, i.e., in memory location BX+AX.
This is a satisfactory procedure that allows a range of different modes of
copying, even though such a scheme is neither general nor universal. A
more general scheme involving read and write instructions only (rather
than copy) should be investigated in the future. As we shall discuss below,
the copy command places a random instruction at the destination with
a given small probability to simulate copy errors. The allocate instruc-
tion is also crucial for reproduction, as it allocates a stretch of memory
at the end of the code that issues the command, in preparation of filling
this memory with its own genome. The amount of space to be allocated is
read from the BX register if no no-op is following the command, or else the
AX or CX register if the respective no-ops follow the allocate instruction
immediately. The divide instruction, finally, splits off the newly grown
code from the mother program, at an address specified by the AX register
(by default). A no-op following the divide as usual changes the register
used to store the address at which the splitting is to take place. After the
daughter code is split off, the physics in avida takes over and places the
new code into a nearest-neighbor spot, determined by an algorithm that
can be chosen by the user (see Section A.4 in the Appendix).

229

230

9 Experiments with avida

A number of instructions in this set are not strictly necessary for repli-
cation, but are included in order for the programs to be able to perform
arithmetic and/or logical operations on numbers provided from “outside”.
These arc the get and put instructions, which read and write numbers
from I/0 bufters, as well as the nand instruction, which performs a simple
(bitwise) logical operation on registers BX and CX, and puts the result into
the register specified by the following no-op (BX if no no-op follows). As
emphasized before, the successful performance of arithmetic or logical
operations can be viewed as the successful catalysis of exothermic chem-
ical reactions, leading to a speed-up of the metabolism, and consequently
to a higher replication rate.

Finally, we should take a look at some of the other instructions that
are available for use, but that do not form the default set. An example
is the switch-stack instruction, that may be very useful for breeding
more complicated multi-input tasks. Also, as programs in avida have a
facing, i.c., they always face one of their cight nearest neighbors directly,
there are commands that change the facing: the commands rotate-r
and rotate-1. These commands are important in experiments involving
parasitism. As the instruction pointer automatically wraps back to the
beginning if it is not explicitly returned by a jump instruction at the end
of the code, parasitism must be implemented in a different manner as in
tierra. In avida, a special instruction allows for a dedicated jump into the
neighboring creature that is currently faced: jump-p. Note that parasitism
is disabled in the standard mode of operation, as the jump-p instruction
is not part of the default instruction set.

9.2 A Simple Experiment

In this section we shall take the first steps towards extracting data from an
avida experiment. We shall take a look at a few simple observables (while
pointing out the salient steps in preparing avida to deliver this data), and
discuss some of the results obtained.

The first experiment will involve taking the genotype abundance distri-
bution. In avida, from the moment that the ancestral string is introduced
into the memory, many millions of different genotypes are produced
during a run due to the effect of mutations. Any genotype that arises
via mutation and that has lost the ability to self-replicate will (almost
always) be present only in an abundance of one, i.e., the mutation event

9.2 A Simple Experiment

was simultaneously the creation and the extinction event for the geno-
type. Other genotypes are much longer lived, and extinction can be many
thousands of updates removed from creation. The abundance, or size, of
a genotype is then the total number of members of that genotype that
ever existed from creation to extinction. The question we ask is about the
distribution of the frequency of these abundances.

Configuring avida

In this experiment, we shall confine ourselves to genotypes created by
copy mutations, i.e., a copy command that should simply copy an instruc-
tion from one location in memory to another will, with a small probability,
place a different instruction at this location instead, while the identity of
this miscopied instruction is chosen randomly from the 24 of the set. To
set the rate of mutations, and to ensure that only copy mutations happen,
we need to adjust the parameters in the file that constructs the avida world
according to the user’s whim: the genesis file. This file is structured into
sections that concern certain aspects of the world. Here, we are interested
in the section entitled “Mutations”, which is reproduced below (see the
User's Manual for a description of the other mutation mechanisms):

Mutations

POINT_MUT_RATE O # Mutation rate (per-location per update) (x10--6)
COPY_MUT_RATE 30 # Mutation rate (per copy). (x10°-4)
DIVIDE_MUT_RATE O # Mutation rate (per divide). (x10°-2)
DIVIDE_INS_RATE 0 # Insertion rate (per divide). (x10°-2)
DIVIDE_DEL_RATE O # Deletion rate (per divide). (x107-2)

All the different mutation modes are turned off by writing a 0 next to the
rate descriptor. The copy-mutation rate is set to 0.3 percent in the above
example, which means that (on the average) one in 333 copy operations
will result in a random instruction being placed at the destination. Note
that the mutation process is Poisson-random. Thus, the time between
miscopies is exponentially distributed, while the average time between
miscopies is just the inverse of the copy-mutation rate, i.e., approximately
333 copy events in the case at hand. Note that the default genesis file
specifies a low rate of insertion and deletion mutations. This rate ensures
a diversity in lengths of programs, but can be turned off here.

Also, for this experiment we need to record more than the usual
metabolic data for the population. As we are interested in the genotype’s

231

232

9 Experiments with avida

abundance from creation to extinction, we need to log the'total number of
members of any genotype that ever lived, at the moment of its extinction.
This is provided for in the genotype.log file, and this logging is turned
on by toggling the switch in the respective field, in the “Data and Log
Files” section of the genesis file reproduced below.

Data and Log Files

SAVE_AVERAGE_DATA 10 # Print these files every x updates. Enter 0 for
SAVE_DOMINANT_DATA 10 # those which should never be printed
SAVE_COUNT_DATA 10

SAVE_TOTALS_DATA 0

SAVE_TASKS_DATA 50

SAVE_STATS_DATA 10

SAVE_GENOTYPE_STATUS O # Print these files every x updates. Enter 0 for
SAVE_DIVERSITY_STATUS O # those which should never be printed
LOG_CREATURES 0 # 0/1 (off/on) toggle to primt file.

LOG_GENOTYPES 2 0 = off, 1 = print ALL, 2 = print threshold ONLY.
LOG_THRESHOLD 0 0/1 (off/om) toggle to primnt file.

LOG_SPECIES 0 0/1 (off/on) toggle to print file.
LOG_BREED_COUNT 0 0/1 (off/on) toggle to print file.

LOG_PHYLOGENY O 0/1 (off/on) toggle to print file.

* B & % B

There are three types of output files in avida (see Section A.10 in the
Appendix for more details). Data files are the first type, which output
metabolic data such as replication rate, gestation time, size, number of
births, etc., of the most abundant genotype in the population (domi-
nant.dat), as well as the averages across the population (average.dat)
at a specified time interval. This interval can be chosen in the genesis
file as shown above.

The log files keep track of events that do not occur at regular time
intervals. An example is the creation, or the extinction, of a genotype or
a species (the concept of species in avida will be discussed later in this
chapter). These are the genotype.log and species.log files, which we
will need for this particular experiment. They are not usually printed, so
they need to be toggled to on in the genesis file as shown above.

A 1 will log all (i.e., threshold! and nonthreshold) genotypes, while a
2 will only record the threshold genotypes. The latter is preferred if disk

'Genotypes are divided into threshold genotypes (which have more than a minimum
number of copies in the population) and non-threshold ones. The latter usually are
incapable of self-replication.

9.2 A Simple Experiment

space is at a premium, as the total number of genotypes can exceed two
million easily in a run going to 50 thousand updates.

Similarly, the creature.log file logs the birth and death of every
program in the population in such a manner that this file can in principle
be used to recreate (playback) an avida run from this file alone. The
status files in avida can be used to reconStruct certain aspects of the
population after a run. For example, the genotype.status file records
the distribution of abundances of threshold genotypes at each point in
time (rather than historically, as is done in the genotype.log file), while
the diversity.status keeps track of the genetic distance of any pair of
threshold genotypes in the population.

Finally, we need to decide what kind of world we would like to run
this experiment in and when it should end. These details are spelled out
in the “Architecture Variables” section of the genesis file, which we can
see below.

Architecture Variables

MODE 2 # 1 = Tierra, 2 = Avida

MAX_UPDATES 50000 # Maximum updates to run simulation.
WORLD_SIZE 3600 # Number of creatures in GA or Tierra mode.
WORLD-X 60 # Width of the world in Avida mode.
WORLD-Y 60 # Height of the world in Avida mode.
RANDOM_SEED 0 # Random number seed. (0 for based on time)

Configuration Files

DEFAULT_DIR ../work/ # Directory in which config files can be found.
INST_SET inst_set.24.base # File containing instruction set.

TASK_SET task_set # File containing task set.

EVENT_FILE event_list # File containing list of events during run.
START_CREATURE genebank/creature.base # Creature to seed the soup.

The first line in the architecture section sets the mode under which avida
should run. Beyond the avida mode that is the default, the software
can emulate tierra in mode 1. Note that the latter mode is not a perfect
emulation of tierra, as neither the tierran instruction set is used, nor
does the instruction pointer roam the core if it runs off the end of a
program. However, the global reaper queue is implemented there, and
there is no spatial geometry in the population. Thus, this mode simulates
a stirred-reactor type of environment. Of course, we should set MODE to 2
for the experiment we are about to perform. The influence of the spatial
geometry on the abundance distribution can be tested by rerunning the

233

234

9 Experiments with avida

same experiment in tiera mode. The next line sets the time.(in updates)
at which avida will automatically quit. Furthermore, we have control over
the world size, the random number seed, and finally the chemistry. The
latter is controlled by setting up the configuration files. The first line in
this section determines the default directory where avida is going to look
for the configuration files, whereas the following lines specify those files.
Avida loads the instruction set proper by specification of the inst_set file.
The default instruction set is contained in the inst_set .24 .base file, and
does not need to be changed here. The rest of the configuration variables
can safely be left unchanged for this experiment, and we are finally ready
to start. More details about the configuration of avida runs can be found
in Section A.9 in the Appendix.

Running avida

An avida run is started by just typing avida on the command line in the
work directory. The visual appearance of avida on startup depends on the
architecture variable VIEW_MODE. By default we start in MAP mode, which
is reproduced below after 71 updates. Note that the appearance of the
viewer depends on the platform on which avida was compiled.

The population starts with a single program of our own design (in this
case, the program contained in creature.base, a file that is loaded via
the genesis file in the section entitled “Population”). This particular pro-
gram is 31 instructions long, and carries a certain amount of redundancy
in its code. It is the default startup program and is well-suited for this
experiment. In fact, the data that we are recording should not depend on
the structure of the ancestor that we are seeding the population with: this
can be checked explicitly by starting another run with the much shorter
ancestor creature.small, and comparing the results.

When the ancestor is placed in the avida world, it immediately begins
to self-replicate, filling up the grid with copies of itself. Shown below is
the lowest denominator ASCII interface, where different genotypes are
represented by different capital letters, rather than colors. The ancestor,
for example, is represented by A. As can be seen, even though most of the
cells are of type A, mutations of the ancestral genotype have already arisen
(denoted by capital letters further down the alphabet), and are competing
with the ancestor for space. Otherwise, the population expands into the
empty space in a vaguely circular manner.

9.2 A Simple Experiment

+ +

Update: 60 | [Mlap [Sltats [Olptions [Z)oom [Qluit | Avida . |

+ — +

. A ..
AAA. .GG

KAAAAAGA G .G
KKKA.AAAG.GGGG
KKDA.GA.G.GEG
.AADA. .GG.EG.G
.A.DAAGCCC.ECCJ1J
LA.A..AA.BGCCEE]J
AAAAAAAADBGECCEEE.
.LAA.A. BBEEE .E.
A.F.A. . AABEE. .
AA+ A .ACCEECCC
AAAF.CCCCCEECEE
C..CCCCEEE.E
ACCCCCCC.E.EE
.CCCCCCC.CE E
ccc.cC cc
C
* Clipping last 39 line(s) * (<] Genotype View [>]

Any time a replicating program spawns an offspring that bears a mutation,
this daughter program will necessarily have a different genotype than its
mother. By default, just after birth such programs are denoted by a period
in the Genotype view. Indeed, as most mutated programs are not viable
after a mutation, we do not bother to give them an identifying letter
until they have proven themselves in the battle for survival. Such proof
is accepted by the software if a minimum of three members of the new
genotype have appeared in the population. In such a case, the genotype
is considered to have crossed the threshold, and it is assumed that the
reason why there are three identical copies of that program in the world
is that this program knows how to self-replicate. Then, an identifying
tag is bestowed on the genotype (see the discussion of the Zoom screen
later), and is displayed via a capital letter in the Genotype view. Of course,
there is a possibility that three identical programs have arisen from three
identical mutations of one particular type of program. Such occurrences
are usually very rare, but in case they might become important in the

235

236

9 Experiments with avida

analysis of data, it is possible to raise the threshold from three to higher
in the genesis file to thwart impostors from acquiring threshold status.
Another important view of the avida world is entered by pressing S
at the keyboard (these commands are case-insensitive). This brings up
the Stats screen, which displays current information about metabolic ac-
tivity, as well as statistics and averages over the population. Here, we
focus only on a selection of data that appears in that window; as always, a
detailed explanation of the information shown in this and other windows
appears in Section A.8 in the Appendix. In the first column of the Stats
screen in the upper left corner, we find information about the current
status of the population as a whole: the number of births this update,
the total number of programs that breed true, the number of parasites,
the current average inferiority (energy), as well as the highest fitness
and merit currently found in the population (the concept of merit is in-
troduced in Section 9.3). Below those are kept the number of programs,

+ —4--- + +
| Update: 81 | [Mlap [S)tats [Olptions [(Z]Joom [QJuit | Avida |
+- + + +
Tot Births.: 89 -- Dominant Gemotype -- Dominant Average
Breed True.: 293 Name........ : 029-aaaab Fitnmess..: 0.1997 0.1437
Parasites..: 0 ID.......... : 4 Merit....: 26 26
Energy.....: 0.33 Species ID..: 2 Gestation: 132 136.8
Max Fitness: 0.2472 Age.........: 66 Size.....: 29 29.9
Max Merit..: 3.3e+01 Copy Size: 29 29.9
Exec Size: 26 25.9
Current Total Ave Age Entropy Abundance: 87 3.17
Creatures: 460 1.3e+03 3.8 6.13 Births...: 25 0.614
Genotypes: 145 3.2e+02 43.0 0.71 BirthRate: 0.230 0.166
Threshold: 17 1.8e+01 69.2
Species..: 17 1.8e+01 51.4 0.53

-
~
o
(=}
1
ES
[=]
1
w
o oo oo
=
o
|
)
o
P —_——— — s

9.2 A Simple Experiment

genotypes, and species currently extant (not surprisingly, the number of
programs equals the number of grid points in the lattice that we defined
once the lattice has filled up).

To the right of the abundances are the total abundances, the respec-
tive number of cells, genotypes, or species that ever existed. The latter
information is important to us here, as we would like to collect enough
statistics for the genotype abundance distribution. To obtain reasonable
statistics, we should collect around 500 thousand genotypes. For a run
at mutation rate R = 0.003, this takes about 10 thousand updates. Note
that most of those are not viable, and therefore would appear as size-one
genotypes. The number of viable genotypes is listed under “Threshold”
This count is usually much less than the number of genotypes listed
above that number. On the right side of the Stats screen, we find a listing
of the properties of the dominant (i.e., the most abundant) genotype, as
well as the value of those properties averaged over the entire popula-
tion. The box below this data informs the user about the tasks that are
learned by the population: the number next to the description of the task
is the number of programs that have accomplished this task during the
last update. Before we leave this description of screens and files and con-
centrate on the data we obtained, we should take a quick look at one of
the most useful views into the avida world that is offered to us: the Zoom
screen.

Performing Micro-Analysis of the Population

The Zoom screen is entered by typing Z at the screen. What we are
offered there is a partial view of the grid on the righthand upper corner,
with the cell in the middle enclosed in brackets. This is the cell that we
are currently zoomed-in on, and we can observe its execution and its
metabolism in every little detail, and at our own pace!

In the view below, avida is paused (as we can see from the word Un-
[Pause] appearing in the lower left corner). It can be restarted at any
time by just pressing P again. While the upper righthand corner displays
a piece of the grid as mentioned (it behaves otherwise just as the Map
Screen, and allows different views by cycling through the maps with the
> and < keys), the box titled “Memory” displays part of the program of the
cell that occupies the center of the map in the inset.

237

238

9 Experiments with avida

+ + + -+
| Update: 81 | [Mlap [S]ltats [O)ptions ([Z]loom [QJuit | Avida |
Current CPU.: (0, 0) + + - + +
Genotype....: 028-aaaaa | Memory: 56 | Stack A | A.A.GGB |
Species.....: spec-7 - + + .A.B.BB |

| 12: sub | ol . .BBB |
Gestation...: 127 | 13: nop-B | 0l FAB[BIB.C |
CurrentMerit: 31 | 14: nop-A | 0l A..A .EB |
LastMerit...: 33 | 15: nop-B | Ol ..A.BEE |
Fitness.....: 0.2598 1>16: nop-A | 0l .CA.EBB |
Offspring...:] | 17: nop-B | 0 |[<] Genotypes [>]I
Errors......: 0 | 18: copy | 0+ +
Age.........: 1 1 19: inc | 0 | AX: 28 |
Executed....: 10 | 20: if-n-equ | 0 | BX: [V
Last Divide.: 10 | 21: jump-b | 0| CX: 28 |
Flags.......: AT + +
Facing......: (1, 0) | Inputs] Get.: 0 Not.: 0 Nor.: 0 |

R el +Put.: 1 And.: O Xor.: O |
Un- [P] ause | 932719887 | GGP.: 0 "Or.: 0 Equ.: 0 |
[N])ext Update | 89019955 | Echo: 0 ~And: O |
[Space] Next Imstruction | 998324565 | Nand: 0 Or..: O 1
(-] and [+] Scroll Memory - + +

The currently active instruction is highlighted in boldface (indicated
above by an arrow instead), and pressing the spacebar executes exactly
one instruction of the program. In this manner, we can check the precise
operation of the program as it moves information from buffers to registers
or to the stack, their precise value at that time also being displayed in this
window. Also, the number of tasks completed by this particular program
(since birth) is displayed in the lower righthand corner. In the upper left-
hand corner of the Zoom window, the genotype that the program that we
are zoomed-in on belongs to is identified by a code that consists simply
out of the length of the program, followed by an identifying five-letter
code that is particular to this genotype, but that otherwise does not re-
flect the character of the type as it is chosen automatically in order of
arrival of the genotype. Thus, the first genotype to arise of size 28 would
be named 028-aaaaa, the second one 028-aaaab, and so forth. Note that
only threshold genotypes are cataloged in such a manner; nonthreshold
genotypes do not receive any identifying tag. The species that this geno-

9.2 A Simple Experiment

type belongs to (see below for the definition of species) is indicated by
a simple four-digit code. The coordinates of this particular program on
the two-dimensional map can be found above the genotype tag, whereas
below the species tag are listed the metabolic data of the program: its
gestation time, merit, fitness, the number of offspring generated since
birth, etc. Also displayed is the cell that the active program is currently
facing, as well as flags indicating that the active program has allocated
some memory (A) and whether it is capable of breeding true (T).

This view allows for the most detailed examination of a program's
function and interaction with its neighbors, and is especially helpful when
testing newly designed instructions, as well as handwritten creatures. For
a description of the Histogram view, as well as the Options screen, we
defer again to the Appendix. We shall now, finally, bow to the impatient
reader and take a look at the data that avida has delivered.

Analyzing Data

The file genotype.log contains the abundance (fifth column) and the
age (in number of updates, seventh column) of a genotype at the time
of its extinction. In order to use this data, we first need to bin it, so as to
obtain a histogram of the frequency of each abundance. For data with low
statistics (few genotypes), the bin size may be chosen to be larger than
one. However, since the bin size influences the power law exponent in
the fit, it is preferable to obtain enough data that this is not necessary. The
binned data can then be displayed graphically on a log-log plot. From the
earlier discussions about self-organized criticality as well as percolation,
we do expect the genotype-abundance distribution to display a power law,
i.e., it should appear as a straight line on a log-log plot. The slope of the
line then reveals the critical exponent. For this run at a mutation rate
R = 0.003, we collect a million genotypes (including nonthreshold ones),
and obtain a log-log plot as shown in Fig. 9.1. Note that for the fit, we
excluded the nonthreshold genotypes, i.e., those that have an abundance
below three.

Fig. 9.1 displays power-law behavior over almost two orders of magni-
tude, showing convincingly that the abundance distribution is scale free
in this regime. Note, however, that this is not the case when the distribu-
tion is taken at high mutation rate. In this case, the distribution acquires a

239

240

9 Experiments with avida

10 —T—
3
10) Genotype abundance]
10t F R=0.003 4
OB
Z L
2
10°
3 N(s) = A s
1
O 1=217 +/- 001
0
10 . 1 ——
10° 10' 10°

S

FIGURE 9.1 Abundance distribution of genotypes in a typical run at mu-
tation rate R = 0.003. The distribution is fitted with a power law N(s) =
As

distinct exponential component that is not due to finite size. As we have
learned earlier (Chapter 6), this is to be expected, as the criticality only
manifests itself in the limit of slow driving, i.e., small mutation probabil-
ity. Thus, even with a relatively small R, an exponential component may
be observed in the abundance distribution if the length of the programs
adjusts itself such that the mutation probability p(€) = 1 — (1 — R)¢ be-
comes large. A follow-up experiment, then, is to examine the power-law
exponent (measured to be T & 2.17 in the above run) in the limit p(¢) — 0,
by taking the distribution for smaller and smaller p(£) and extrapolating
to 0.

9.3 Experiments in Adaptation

Another simple experiment involves monitoring the adaptation of the
population to a fitness landscape. As discussed earlier, and in more detail
in Section A.3 of the Appendix, a fitness landscape rewarding logical
and arithmetic operations on inputs is artificially constructed for the

9.3 Experiments in Adaptation

population to adapt to. The meaning of the logical operations is entirely
arbitrary: what is important is that a genetic sequence (a code) has to be
developed in order to trigger the bonus, while we do not specify exactly
which sequence accomplishes this.

The basic metabolism of the programs is kept up by providing a slice
of CPU time to each program according to a figure of merit. The base merit
M, of each cell is calculated according to a formula that is selected in
the genesis file, and is usually proportional to the length of the program.
The overall merit of the program is then obtained by multiplying M, by
a number v; > 1 for each task acquired. These numbers are (except for
b = 0, which implies v = 1) obtained from the bonus b in the task_set
file by

v =1+42073, (9.1)
The task_set file and the bonuses b;, reproduced below, allow the user to

select the multipliers v; for each task that can be bred into the population
(see Appendix for more details).

#Task bonus (0=o0ff) Meaning Difficulty
get 1 # I/0

put 1 # 1/0

gep 1 # 1/0

echo 1 # I/0

not 2 # "A - 1 nand
nand 2 # “(A and B) - 1 nand
or_n 3 # “AorB - 2 nands
and 3 # A and B - 2 pands
or 4 # AorB - 3 nands
and_n 4 # A and "B - 3 nands
nor 5 # “(A or B) - 4 pands
xor 6 # A xorB ~ 5 nands
equ 6 # ~(A xor B) - 5 nands

The first four tasks in this list simply breed input/output (I/0) capability
into the programs. This happens, on the time scales considered, relatively
fast. After the echo bonus is triggered, virtually all programs in the popu-
lation read numbers from the input and write them into the output. This
sets the stage for them to learn how to compute on these numbers.

241

242

9 Experiments with avida

In Fig. 9.2 we can see the time-evolution of the fitness o, defined as
the merit

M= mo]ﬂ[v,-, (9.2)
i=1

(where n is the number of tasks learned by the program) divided by the
gestation time f,

M
o=

g
for the dominant genotype in the population. The dominant genotype is
simply defined to be that which has the highest frequency, or representa-
tion, in the population. For low mutation rates the dominant genotype
usually stands out, whereas at high rates, where the population is very
diverse and close to the melting point, the dominant genotype still may
have only a handful of representatives. However, the dominant genotype
is always selected from among the threshold genotypes. In case several
genotypes have the same (highest) abundance, the genotype that was
chosen as most abundant the update before is kept.

Fitness
10°
—
0° | -
8 s 1° 1
10 F -J
-o-‘ a A .
500 1000 1500 2000
t [updates]
100 1 1 1 1 1

0 5000 10000 15000 20000 25000 30000
t [updates]

FIGURE 9.2 Fitness of the dominant genotype, for a run of 3,600 programs
at mutation rate R = 0.003. Inset shows early adaptation to I/0 in first 2,000
updates.

9.3 Experiments in Adaptation

Tasks
0.8
| I"""“ff"«‘-"’ﬂ-’-)’ﬁi!f'?ﬂzexmm-,l
p [TR A 10
o
1 prot |
| L
: -
504 | l - — |
: | 1|----A NOR B
l ‘!|—-~A OR B
02 | ! |
! i |— A NOT B
i
I ! -
0.0 :\ 1
2000 4000 6000 8000 10000

t [updates]

FIGURE 9.3 Fraction of programs that perform a specific task as a function
of time, in the run depicted in Fig. 9.2. The legend identifies four of the taks
learned in the first 10,000 updates.

The fitness curve in Fig. 9.2 shows the typical staircase structure,
where the jumps indicate the adaptation events that are akin to first-
order phase transitions (see Section 4.10). All of the 1/0 bonuses were
acquired after about 2000 updates (see the inset). The next large transition
involved the learning of the "A or B task, after around 4,000 updates (see
Fig. 9.3). This transition and the concurrent drop in entropy is depicted
in detail in Fig. 4.6. At that time, a small number of programs apparently
had also figured out how to perform the NOT task, but did not do so
consistently until just before update 6,000, when they started to take over
the population. In the midst of this, this task seems to have been converted
to the OR task, which carries a higher bonus. As a consequence, NOT was
driven back into oblivion and OR prospered. The programs discovered how
to trigger the bonus for NOR right on the heels of the discovery of OR, very
likely using most of the same code. These adaptations, and corresponding
optimizations of the code, account for most of the fitness jumps before
10,000 updates in Fig. 9.2. In general, the tradeoff and battle between
programs having mastered different bonuses, and especially the temporal
order in which they are discovered, is unpredictable. The phenomenon
where one task is converted into another, and some discoveries following

243

244

9 Experiments with avida

each other closely (because a small modification of an existing code will
trigger additional bonuses), is reasonably common.

9.4 Experiments with Species and
Genetic Distance

In this project, we are going to address the concept of species in avida, and
the ways evolutionary changes affect the genome.

The lowest taxonomic level in avida is of course the genotype of a pro-
gram. As the programs replicate asexually, the usual species definition of
biology, as groups of interbreeding natural populations that are reproductively
isolated from other such groups [Mayr, 1970), is inapplicable. However, from
observations of the population of programs, it becomes clear that certain
groups of programs, identified by their similarity in “genetic” code, do
form. Therefore, let us consider a method to group such “species”, and
follow their development as a function of time, as well as geographical or
ecological separation.

In close analogy to the usual biological species concept, we shall be
determining the likeness of two replicating programs by lining up their
genetic code (in such a way that they are identical in the maximum
number of corresponding sites) and constructing crossover products. A
crossover product consists of part of one of the organisms, taken from
above a chosen crossover point, together with the part of the other, taken
from below the crossover point. Such a “sexually” reproduced program is
then tested with respect to its functionality. If this hybrid is capable of self-
replication, we can assume that the parents were genetically similar. Note
that the hybrid is not, in this case, introduced into the population. Differ-
ent levels of taxonomy can now be constructed. For the lowest level of the
taxonomic hierarchy, we require that a functional hybrid is formed if the
crossover is performed at all possible crossover points. This definition of
a species entails that the parents differ only at positions that are neutral
as far as mutation is concerned, i.e., if they can be mutated with impunity
without affecting the fitness of the organism. A higher taxonomic level,
that contains as subtazxa all the species defined by the previous criterion,
is obtained by only asking that genomes produce functional crossover
products for one single crossover point chosen towards the middle of the

9.4 Experiments with Species and Genetic Distance

genome. With such a definition we can obtain species-abundance distri-
butions just like the one we obtained earlier for genotypes. This we did
in Chapter 7 when we tested a simple theoretical model for cluster-size
distributions in percolation.

In avida, we can also examine the dynamical aspects of species forma-
tion, as a function of geographical or ecological separation, and random
genetic drift. For that purpose, we need to define a genetic distance
to monitor the genetic kinship between programs, and observe taxo-
nomic divergence as a function of either geographic separation, ecological
separation, or random drift separately, and then combined.

A genetic distance between symbolic strings can be defined in differ-
ent ways depending on the accuracy of the desired result, and the possible
mechanisms that can lead to alterations of the string by single events. For
strings whose length cannot change, and that are only affected by point
mutations, the natural Hamming distance, which counts the number of
positions at which the strings differ, is an adequate measure. For pro-
cesses in which lines can be added, inserted, or deleted from the code,
the simple Hamming distance is obviously inadequate. In such cases, the
Levenstein distance [Levenstein, 1966) should be used, which compares
two strings and returns the minimum number of mutations, insertions,
and deletions it takes to obtain one string from the other. The Levenstein
distance, on the other hand, returns inaccurate results if transpositions of
code are common, i.e., if there is a finite probability that sections of code
are swapped between two strings. Even though this is not a mechanism
that is implemented a priori in avida, such alterations happen frequently
in an emergent fashion. Thus, to keep an accurate count of the genetic
divergence of the population, such processes must be taken into account.
Such a generalized genetic distance measurement requires complicated,
time-consuming algorithms. In avida, we have implemented an approxi-
mate algorithm that gives much more accurate results than Levenstein
distance if transpositions are present, but is still manageable computation-
ally. Armed with such measures of genetic distance and variability, we
can explore genetic drift and speciation under controlled circumstances.

The first simple experiment concerns the amount of natural genetic
drift occurring between organisms that are, artificially, separated by a
geographic barrier. In preparatory experiments, we split a monotypic
population (single species) after about thirty generations, and monitor
the mating success between all pairs across the barrier (again, without

245

246

9 Experiments with avida

Mating—success

00 i 1 1 — 1

100 200 300 400 500 600
Time [generations]

25 T T ™ T T
[1]
€20
B
-]
L 1B
s
[=4
]
Nl (o)
]
o
o
$s
<
0 1 1 j 1 1
100 200 300 400 500 600

Time [generations]

FIGURE 9.4 (a) Crossover mating success for two strings from separated
populations as a function of time for 1000 strings separated after 30 generations;
(b) Genetic distance between strings across artificial barrier.

reintroducing any of the hybrids). At the same time, we measure the ge-
netic distance between all pairs to observe how mating success decreases
as the genetic distance between the split populations increases. These re-
sults are shown in Fig. 9.4. From these experiments it is apparent that the
mating-success between strings separated by the barrier drops rapidly at
first, then levels out to an approximately constant value. In the meantime,
the average genetic distance between the populations increases steadily.
Note that these experiments require a modification of the avida software
from the form included here to allow for the geographic separation.

Problems

9.5 Overview

Experiments with artificial chemistries that support self-replication allow
insights into a number of real-life biological problems. First, experiments
need to be designed that separate the universal features of the system
from the ancillary ones, in order to gauge the system's predictive power
with respect to natural living systems. Then, specific experimental condi-
tions can be set to explore the dynamics and statistics of particular simple
living systems. The flexibility of the configuration of avida allows experi-
ments in such areas as taxonomic abundance distributions, evolutionary
adaptation, speciation, and many more. As an example, an experiment to
determine the genotype abundance distribution is carried out in detail,
serving as a grand tour of the avida system. The result of this experiment
suggests that genotype abundance distributions in avida are scale free in
the limit of slow driving, i.e., small mutation probabilities. Experiments in
speciation suggest that species formation can occur relatively fast given
geographic separation coupled with random genetic drift.

Problems

9.1 Investigate the relationship between gestation time and program length
from a theroretical and an experimental perspective. Can you make a
staterment about the smallest possible gestation time in avida? Compare
your theoretical estimates and your attempts at breeding programs with
the smallest gestation time. Can you “engineer” fitter programs?

9.2 Using the avida software, breed programs that perform the NOT and the
AND operations. Find specific examples of creatures that perform these
and extract them from the soup. Explain how these creatures work.

9.3 Obtain the frequency distribution of ages of genotypes and compare to the
abundance distribution. What can you say about the connection between
“size” (the abundance) and age of a genotype? (The famous Age-Area
relation; see Willis, 1922.)

247

CHAPTER TEN

Propagation of Information

A theory has only the alternative of being right or wrong. A model has
a third possibility: it may be right, but irrelevant.
Manfred Eigen

In the investigation of artificial systems with the goal of making predic-
tions about real systems, it is important to check whether the artificial
system at least shares some basic, universal features with the natural one
that it is supposed to mimic. In this chapter, we shall investigate the basic
modes of information propagation and diffusion across the lattice, and
compare them to theoretical models that are known to describe the effect
in natural systems. In such a manner, we can start to establish a baseline
of characteristics that we know we can trust, and that are an accurate
abstraction of the more complicated processes ocurring in real systems.

10.1 Information Transport and
Equilibrium

As we discussed in Chapter 4, systems in thermodynamical equilibrium
respond to perturbations with waves that reestablish equilibrium. This

249

250

10 Propagation of Information

is a general feature of statistical systems, but it can also be observed in
natural populations, where the disturbance of interest is a new species
with either negligible or positive fitness advantage. The new species
spreads through the population at a rate dependent on its relative fit-
ness and some basic properties of the medium that can be summarized
by the diffusion coefficient. This problem has been addressed theoreti-
cally [Fisher, 1937] and experimentally since early this century (see, e.g.,
Dobzhansky and Wright, 1943 and references therein). The application
of the appropriate machinery (reaction-diffusion equations) to the spa-
tial propagation of information rather than species is much more recent,
and has been successful in the description of experiments with in vitro
evolving RNA [Bauer et al., 1989; McCaskill and Bauer, 1993]. Systems of
self-replicating information (cf. the replicating RNA system mentioned
above) are often thought to represent the simplest living system, and it is
for this reason that we would like to investigate information propagation
in our artificial chemistry.

It has long been suspected that living systems operate, in a thermo-
dynamical sense, far away from the equilibrium state. On the molecular
scale, many of the chemical reactions occurring in a cell's metabolism
require nonequilibrium conditions. On a larger scale, it appears that only
a system far away from equilibrium can produce the required diversity
(in genome) for evolution to proceed effectively. In the systems that we
are interested in—systems of self-replicating information in a noisy and
information-rich environment—the processes that work for and against
equilibration of information are clearly replication and mutation. In the
absence of mutation, replication leads to a uniform nonevolving state
where every member of the population is identical. Mutation in the ab-
sence of replication, on the other hand, leads to maximal diversity of the
population but no evolution either, as selection is absent. Thus, effective
adaptation and evolution depend on a balance of these driving forces,
as we have seen in the previous chapter and will show in more detail
in Chapter 11. The relaxation time of such a system, however, just as in
thermodynamical systems, is mainly dictated by the mutation rate, which
plays the role of temperature in these systems. As such, it represents a
crucial parameter that determines how close the system is to thermody-
namical equilibrium. Clearly, a relaxation time larger than the average
time between (advantageous) mutations will result in a nonequilibrium
system, while a smaller relaxation time leads to fast equilibration. The
relaxation time may be defined as the time it takes information to spread

10.2 The Artificial Life System sanda

throughout the entire system (i.e., travel an average distance of half the
diameter of the population). A nonequilibrium population therefore can
always be obtained (at fixed mutation rate) by increasing the size of the
system. At the same time, such a large system segments into areas that
effectively cannot communicate with each other, but are close to equilib-
rium themselves. This may be the key to genomic diversity, and possibly
to speciation in the absence of niches and explicit barriers.

In order to test equilibration through information transfer in an arti-
ficial chemistry, we shall investigate here the dynamics of information
propagation in the Artificial Life system sanda,' a variant of the avida
system designed to run on arbitrarily many parallel processors. This is
a necessary capability for investigating arbitrarily large populations of
strings of code. The purpose of these experiments is two-fold. On the one
hand, we would like to validate our Artificial Life system by comparing the
experimental results to theoretical predictions known to describe natural
systems, such as waves of RNA strings replicating in QB-replicase [Bauer
et al., 1989; McCaskill and Bauer, 1993]. On the other hand, this bench-
mark should allow us to determine the diffusion coefficient and the speed
of information propagation armed only with the relative fitness and mu-
tation rate. Finally, we shall arrive at an estimate of the minimum system
size which guarantees that the population will not, on average, equilibrate.

In the next section we briefly describe those parts of the sanda system
that differ from avida.

10.2 The Artificial Life System sanda

Like avida, sanda works with a population of strings of code residing on
an N x M grid with periodic boundary conditions. Each lattice point
can hold at most one string. Each string consists of a sequence of in-
structions from a user-defined set. These instructions, which resemble
modern assembly code and can be executed on a virtual CPU, are de-
signed to allow self-replication. The set of instructions used is capable of
universal computation.

'This software was designed and written by J. Chu [Chu and Adami, 1997].

251

252

10 Propagation of Information

Also like in avida, when a string replicates it places its child in one
of the eight adjacent grid spots, replacing any string that may have been
there. Which lattice point is chosen can be defined by the user. In the
experiments that we are going to examine, both random selection and
selection of the oldest string in the neighborhood are used, an option that
can be tested in avida also (see Section A.6 in the Appendix). As we shall
see, the selection mechanism has a significant effect on the spread of
information. We note here that this birth process, and indeed all interac-
tions between strings, are local processes in which only strings adjacent
to each other on the grid may affect each other directly. This is important,
as it both supplies the structure needed for studies of spatial character-
istics of populations of self-replicating strings of code, and allows longer
relaxation times—making possible studies of the equilibration processes
of such systems and their nonequilibrium behavior.

What decides whether one particular sequence of instructions (or
genotype) will increase or decrease in number is the rate at which it
replicates, and the rate that it is replaced at. In the model that is described
in Chapter 11, the latter is genotype independent (the chemostat regime).
Accordingly, we define the former (i.e., its own replication rate) as the
genotype’s fitness. In other words, fitness is equal to the inverse of the
time required to reproduce (gestation time):

ni(t + 1) = ni() + eFni(t) — (e)n(), (10.1)

where
1
€ = t—‘ (102)
g

and t; is the gestation time of genotype i. In Eq. (10.1) above, we note
the appearance of the copy-fidelity F, which takes values between 0 and 1
and which we define later. To consistently define a replication rate, it is
necessary to define a unit of time. In avida, time is defined in terms of the
update: the time it takes for every member of the population to execute
the average time-slice. In sanda, physical time is defined by stipulating
that it takes a certain finite time for a cell to execute an instruction. This
base execution time may vary for different instructions (but is kept con-
stant in all experiments presented here). The actual time a cell takes to
execute a certain instruction is then increased or decreased by chang-
ing its efficiency. Initially, each cell is assigned an efficiency near unity,

10.3 Diffusion and Waves

e = (1 + n), where 75 represents a small stochastic component. As a cell
acquires a merit, its efficiency increases; this is translated into a speed-up
of the cell’'s metabolism, i.e., its baseline time for executing an instruc-
tion drops. Self-replication consists of the execution of a certain series of
instructions by the cell. Thus, the fitness of the cell (and its respective
genotype) is just the rate at which this is accomplished and depends ex-
plicitly on the cell’s efficiency. We can assign better (or worse) efficiency
values to cells that contain certain instructions or that manage to carry
out certain operations on their CPU register values. This allows us to in-
fluence the system'’s evolution (by effectively speeding up their CPU) so
as to evolve strings that carry out predetermined tasks. A cell that man-
ages to perform a user-defined task can be assigned a better efficiency
for accomplishing it. Such cells, by virtue of their higher replication rate,
then have an evolutionary advantage over other cells and force those
into extinction. At the same time, the discovery that led to the better
efficiency is propagated throughout the population and effectively frozen
into the genome. In addition to the introduction of a real time, sanda dif-
fers from its predecessors in its parallel emulation algorithm. Instead of
using a block time-slicing algorithm to simulate multiple virtual CPUs,
sanda uses a localized queuing system that allows perfect simulation of
parallelism. Finally, sanda was written to run on both parallel processors
and single processor machines, its biggest advantage over avida in its cur-
rent implementation. Therefore, it is possible, using parallel computers,
to coevolve very large populations of strings. This permits studies of ex-
tended spatial properties of these systems of self-replicating strings and
holds promise of allowing us to study them away from equilibrium.

10.3 Diffusion and Waves

Information in sanda is transported entirely by self-replication. When a
string divides into an adjacent grid site, it is also transferring the informa-
tion contained in its code (genome) to this site. Here, we shall investigate
the mode and speed of this transfer in relation to the fitness of the geno-
type carrying the information, the fitness of the other genotypes near
this carrier, and the mutation rate.

Consider what happens when one string of a new genotype appears
in an area previously populated by other genotypes. We will make the

253

254

10 Propagation of Information

assumption that the fitness of the other viable (self-replicating) genotypes
near the carrier are approximately the same. This holds for cases where
the carrier is moving into areas that are in local equilibrium. We will use
f. for the fitness of the newly introduced (carrier) genotype and f, for
the fitness of the background genotypes. If f, < f;, obviously the new
genotype will not survive nor spread.

In the following, we study three different cases: diffusion, wave
propagation, and wave propagation with mutation. The diffusion case
represents the limit where the fitness of both genotypes is the same. It
turns out that this can be modeled as a classical random walk. On average,
if the carrier string replicates, it will be replaced before it can replicate
again. This is effectively the same as the carrier string moving one lattice
spacing in a random direction, chosen from the eight available to it (see
Figure 10.1). The random walk is characterized by the disappearance of
the mean displacement and the linear dependence on time of the mean
squared displacement:

k=4,
_
L 2 =JA

FIGURE 10.1 Random walk of the carrier genotype with fitness f, = f; on
the background of fitness f;,. On average, the carrier genotype is replaced as
often as it replaces another cell, giving rise to the walk.

10.3 Diffusion and Waves

Nw =0, (10.3)
(r’)(t) = 4Dt , (10.4)

where D is defined as the diffusion coefficient. Note that this equation
differs by a factor of two from the diffusion equation that we encountered
in Chapters 6 and 8, as diffusion takes place in two dimensions here. For
our particular choice of grid and replication rules, it is easy to see that
the diffusion coefficient of a genotype with fitness f is

3.
p® = galf, (10.5)

where a is the lattice spacing. This holds for a biased selection scheme
where we select the oldest cell in the neighborhood to be replaced (see
below). This is indicated by the superscript (b) on the diffusion coefficient
in Eq. (10.5). The factor 3/8 just reflects the number of choices that lead
to a displacement in one direction, as indicated in the picture below.

.4

P4

XKt-

If f. > f», we find that instead of diffusion we obtain a roughly circular
population wave of the new genotype spreading outward, as depicted in
Fig. 10.2. We are of course interested in the speed of this wavefront. Let
us first treat the case without mutation. If the radius of this wavefront is
not too small, we can treat the distance from the center of the circle r as
a linear coordinate. In other words, even though propagation takes place
on a two-dimensional lattice, we shall only monitor the progress in one
direction, as indicated below.

255

256

10 Propagation of Information

L4,

m S

C

FIGURE 10.2 Circular wave of carrier genotype of fitness f; > f;, spreading
over the background of fitness f;. The boundary between the two genotypes
moves with a speed v outwards.

We define p(r, t) as the mean normalized population density of strings
of the new genotype at a distance r from the center, at a time t measured
from our initial seeding with the new genotype. We assume that the ages
of cells near each other have roughly the same distribution and that this
distribution is genotype-independent, ensuring that the selection of cells
to be replaced docs not depend on genotype either.

Then we can write a flux equation (the reaction-diffusion equation)
that determines the change in the population density p(7, t) of the carrier
genotype, as a function of time. As we only have two genotypes in this
description, the background genotype density will be 1 — p(r, t). Then, we
have simply

o(rt+1) = p(r,t) + Ryo(r, t) —R_(r, 1) , (10.6)

10.3 Diffusion and Waves

where

3 1 3
Ry(r,)=f [gp(r —a,t)y+ Zp(r. t) + gp(r +a, t)]

x (1 = p(r, 1) (10.7)°

3 1
R.(r,y=fp [g(l —p(r—a,t)+ Z(l- — p(r, 1))

+ %(1 —p(r+a, t))] x p(r, B). (10.8)

Collecting these terms and writing p(r,t + 1) — p(t) as a time derivative,
we can write
ap(r,) _

3 1 3
P fe [gp(r -at)+ Zp(r,)+ —ép(r +a, t)] (1 — p(r, 1)

3 1
—fv [5(1 —-p(r—a,t)) + Z(l - p(r,t))

+ g(l —p(r+a, t))] p(r, 1) . (10.9)

Since we are interested in the speed of the very front of the wave, we
can assume p to be small. Also, from physical considerations we expect
p to be reasonably smooth. Then, we can use a Taylor expansion for
p(r £ a,t) and keep only the lowest order terms, to obtain

ap(r,t) _ 3 2F, Pp(r,t)
ot 8 or?
This now has taken the form of a reaction diffusion equation just like we
encountered earlier [in the chapter on SOC, Eq. (6.34)], with a reaction
term given by just the difference between the replication rates. Note also
that for the case where the replication rates are the same, the equation
just reduces to the diffusion equation with diffusion coefficient (10.5).
Eq. (10.10) can be solved for the linear wavefront speed v®. This is
done essentially by parameterizing the wavefront of p with an exponential
function (see Fig. 10.3 and Problem 10.2). Such a procedure yields the
Fisher velocity:

+ (e = fo)o(r, 1) . (10.10)

v® = a\/g folfs = fo) (10.11)

=2/DP(f. -), (10.12)

257

258

10 Propagation of Information

p(re)

Y

r

FIGURE 10.3 Profile of the solution of (10.10) and determination of the
wavefront.

where D is the diffusion coefficient of the carrier genotype when us-
ing a biased (by age) selection scheme, Eq. (10.5). (Consult Cross and
Hohenberg, 1993, for details on how to obtain this wavefront speed.)

To study the case of wave-propagation with mutation, we shall make
the assumption that all mutations are fatal. We can then calculate a steady
state density of nonviable cells 3§,

§=1-F!8, (10.13)

where the fidelity F is the probability that a child will have the same
genotype as its parent (i.e., not be mutated). The fidelity is related to the
mutation rate R by

F=(1-R¢, (10.14)

where £ is the length of the particular string. Modifying our previous flux
equation (10.10) to take into account these new factors and repeating our
previous analysis yields

v® = 27D (5, — F1/3f;) . (10.15)

Note that the speed of the wavefront is decreasing roughly linearly with
the fidelity F, and vanishes for F = 0.

Let us now consider the effects of different selection schemes for
choosing cells to be replaced. The relations we derived above hold true
for the case in which we replace the oldest cell in the 8-cell neighborhood
when replicating (age-based selection). Another method of choosing a

10.3 Diffusion and Waves

cell for replacement is to choose a random neighboring cell regardless
of age. This scheme, which we term random selection as opposed to the
biased selection treated above, effectively halves the replication rate of
all cells, as half of the cells never get the chance to produce an offspring
before being removed (as Fig. 10.4 shows). It follows that the diffusion
coefficient is also halved,

3
D"V = —qa? 10.16
T (10.16)

1
= ED(") (10.17)

and for the velocity of the wavefront (with no mutation), we find

v =2,/D{ % . (10.18)

In Fig. 10.4, we show a histogram of the number of offspring that a
cell obtains before being replaced by a neighbor’s offspring for the bi-
ased selection case (left panel), and the random case (right panel). As
expected from general arguments, half of the cells in the random selec-
tion scenario are replaced before having had a chance to produce their
first offspring (resulting in a reduced diffusion coefficient), while biased
selection ensures that most cells have exactly one child.

7000 v T LB S T —T
6000 | (a) | i (b)
(2]
‘3‘5000 - — -
% 4000 | - -
6
% 3000 | 1 r -
a
22000 - . 4
g |
1000 [| . = n
o u L 1 1 1 1 | . 1
0O 2 4 6 8 0O 2 4 6 8
Number of offspring Number of offspring

FIGURE 10.4 Distribution of number of strings generating different numbers
of offspring, for the biased selection case (a), and the random selection scenario
(b). The scale is arbitrary.

259

260

10 Propagation of Information

10.4 Comparison: Theory and Experiment

We carry out our experiments by first populating the grid with a single
(background) genotype of fitn€ss f,. Then, a single string of the carrier
genotype with fitness f; is placed onto a point of the grid at time t = 0.
We then observe the position and speed of the wavefronts formed, the
mean squared displacement of the population of carrier genotypes, and
various other parameters as a function of time.

With f, kept constant,? we can vary f,/f. from 0.1 to 1.0 in increments
of 0.1. Also, we vary the mutation rate R from 0 to 14 x 10~3 mutations
per instruction, in increments of 1 x 1073,

Figure 10.5 shows a comparison of the theoretical vs. measured mean
square displacement as a function of time for a genotype with no fit-
ness advantage compared to its neighbors (f,/f. = 1). Because the process

100 T T T

<r2>(7)

_20 1 1 1
5 10 " 15 20
T [Time] (x107)

FIGURE 10.5 Mean squared displacement of genome as a function of time
due to diffusion. Solid lines represent experimental results obtained from 1500
independent runs. Dashed lines are theoretical predictions. The upper curves
are obtained with the biased selection scheme, while the lower curves result
from the random selection scenario.

*The gestation time was approximately 330,000, where the base execution time for each

instruction was (arbitrarily) set to 1000. Therefore, f, = 7 here.

10.4 Comparison: Theory and Experiment

of diffusion is stochastic, many runs have to be superimposed in order
to extract the linear law predicted by Eq. 10.4. The data shown here are
extracted from approximately 1500 runs, obtained on a massively parallel
supercomputer. The solid lines represent the (smoothed) averages of our
measurements (for biased and random selection schemes), while the
dashed lines are the theoretical predictions obtained from the diffusion
coefficients (10.5) and (10.16), respectively. The slopes of the measured
and predicted lines agree very well, confirming the validity of our random
walk model and the diffusion coefficient predicted by it (without any free
parameters). The slight discrepancy between the experimental curves
and the predicted ones at small times is due to a finite-size effect that can
be traced back to the coarseness of the grid.

Fig. 10.6 shows the measured values of the wavefront speed for cases
where f. > f, and without mutation, with the corresponding predictions.
Again, the higher curve is for biased and the lower for random selection.
Note that the wavefront speed gain from an increase in fitness ratio is
much better than linear. Note also that all predictions are again free of
any adjustable parameters.

35 T T T T

(@]
o
1

N
(8.}
T

o
T

3
T

) [Wavefront speed] (x107°)
o
T

on
T

o

v(f/f,

o
o

0.2 0.6 0.8 1.0

0.4 .
f./f_ [Fitness ratio]

FIGURE 10.6 Wavefront speed of a genotype with fitness f. propagating
through a background of genotypes with fitness f;,, averaged over four runs for
each data point. Upper curve: biased selection; lower curve: random selection.
Solid lines are predictions of Egs. (10.12) and (10.18).

261

262

10 Propagation of Information

The dependence of this curve on the mutation rate is shown in
Fig. 10.7. Increasing the mutation rate tends to push the speed of the
wave down. We should quickly note, however, that because we have only
used copy mutations, there is no absolute cutoff point or error threshold
F. where all genotypes cease to be viable, with F, > 0. Rather, genotypes
can spread until F is very close to the limit F; = 0. Error thresholds will
be investigated in much more detail in Chapter 11.

Finally, we plot the dependence of the wavefront speed on the muta-
tion rate for a fixed value of the fitness ratio (f,/f: = 0.6) in Fig. 10.8.
Data were obtained from an average of four runs per point in the
biased selection scheme. Again, the prediction based on the reaction-
diffusion equation with mutation agrees well (within error bars) with our
measurements.

The experiments shown here suggest that information propagation
via replication into physically adjacent sites can be succinctly described
by a reaction-diffusion equation. Such a model has been used in the
description of in vitro evolution of RNA replicating in a solution of the
bacterial enzyme Qgp-replicase [Bauer et al., 1989; McCaskill and Bauer,
1993], as well as in experiments involving the replication of viruses in

35 T ' l T

30 a R=0 .

25 - xR=4x10"0 A
* R=8x10"3 A

) [Wavefront speed] (x107°%)
s}
)

15 F +R=12x10"3 -

10 | .
P 5 | -
>
\)/ 0 ! 1 1

0.0 0.2 0.8 1.0

0.4 0.6
f./f. [Fitness ratio]

FIGURE 10.7 Measured wavefront speeds versus fitness ratio for selected
mutation rates R (symbols) are plotted with the theoretical predictions from
Eq. (10.15) (for the biased selection scheme only).

10.4 Comparison: Theory and Experiment

()] (&) >
(@] o (@]

N
(8,]

v(R) (x107)

N
(@]

15 1 1 | 1 1 1
6 8 10 12 14
R (x1073)

FIGURE 10.8 Wavefront speed of a genotype (biased selection) with rela-
tive fitness f,/f, = 0.6 as a function of mutation rate (symbols). Solid line is
prediction of Eq. (10.15).

a host environment [Yin and McCaskill, 1992). The same equation is
used to describe the wave behavior of different strains of E. coli bacteria
propagating in a petri dish [Agladze et al., 1993], even though the means
of propagation in this case is motility rather than replication.

For artificial living systems such as the one we have investigated here,
it is possible to formulate an approximate condition that ensures that it
will (on average) never equilibrate, but rather consist of regions of local
equilibrium that never come into informational contact. From the time
scales mentioned above, we determine that the number of cells N in such
a system must exceed a critical value:

2 2/3
N> (R”(?) : (10.19)

where R, is the rate of nonlethal mutations, v(f) the Fisher velocity, and a
the lattice spacing (assuming a mean time between nonlethal mutations
t, = (NR)™).

Beyond the obvious advantages of a nonequilibrium regime for ge-
nomic diversity and the origin of species, such circumstances offer the
fascinating opportunity to investigate the possibility of nonequilibrium
pattern formation in (artificial) living systems. As emphasized earlier,

263

264

10 Propagation of Information

since it is widely believed that many of the processes that define life,
including evolution, occur in a state that is far from equilibrium, to study
such processes it is necessary to-have systems that exhibit the properties
of life we are interested in and that can be quantitatively studied in a
rigorous manner in this regime.

10.5 Overview

In this chapter we used a parallel implementation of avida—the Artificial
Life system sanda, which allows the investigation of large populations of
self-replicating strings of code—for the purpose of observing nonequilib-
rium effects. The propagation of information was observed for a broad
spectrum of relative fitness, ranging from the diffusion regime where the
fitnesses are the same, through regimes where the difference in fitness
leads to sharply defined wavefronts propagating at constant speed. The
dynamics of information propagation leads to the determination of a cru-
cial time scale of the system, which represents the average time for the
system to return to an equilibrium state after a perturbation. This relax-
ation time depends primarily on the size of the system, and the speed
of information propagation within it. Equilibration can only be achieved
if the mean time between (nonlethal) mutations is larger than the mean
relaxation time. Thus, a sufficiently large system will never be in equilib-
rium. Rather, it is inexorably driven far from equilibrium by persistent
mutation pressure.

Problems

10.1 Derive Eq. (10.12), the speed of the wavefront, from the solution to
Eqg. (10.10) by approximating the exponential tail of p(r — vt). The speed
is obtained by examining the condition under which there is only one
wavefront speed. (For a more rigorous derivation, consult Cross and
Hohenberg, 1993, pp. 928-931).

10.2 Derive Eq. (10.19) and examine the assumptions underlying it. With
reasonable estimates for f and R,, estimate the minimal size of the
lattice that results in nonequilibrium effects.

CHAPTER ELEVEN

Adaptive Learning at the

Error Threshold

Fluctuat nec mergitur.!
Motto of the city of Paris

In Chapter 9 we examined experiments where the population adapts to a
user-defined landscape, and thus learns how to perform simple computa-
tional tasks that result in a speed-up of the code’s metabolism. Here, we
will not focus on how this happens (as before) but rather on two differ-
ent, but related, questions. First we shall address the circumstances under
which this happens most successfully, and secondly we will ponder how
and why living systems seem to adjust the circumstances in such a man-
ner that the adaptive powers of the population are maximal. As we shall
see, this is a regime where the population is precariously perched at the
edge of an error catastrophe, i.e., the probability for a string of code to
acquire a mutation before being able to gestate a copy of itself is close to
100 percent. To address the first question, we shall conduct experiments
to determine the advantage of such a regime, while secondly we detail
the approach to this threshold, an undertaking that involves both theory
and experiment.

'She floats, but sinketh not.

265

266

11 Adaptive Learning at the Error Threshold

11.1 Information Processing at the
Edge of Chaos

That something important is going on at the boundary between deter-
minism and chaos in learning systems was established by Chris Langton
in a study of computation and information processing in cellular au-
tomata [Langton, 1992). Using his A-parameter that characterizes CA rules
(see Section 2.1), Langton could show that in between class II (determin-
istic) and class IIT (chaotic) rules, could be found the class IV rules, which
display complex behavior and an ability to store and transmit information
most efficiently. In order to make this determination, Langton studied
the mutual entropy between a site at time t and a site at t+ 1, as a function
of the A-parameter, in two-dimensional automata with eight states and a
von Neumann neighborhood. The mutual entropy here plays the same
role as in Information Theory: it is the amount of information processed
by the site. Langton determined that the information processed by a site
is maximal in the region of the A parameter characteristic of class IV
automata: just at the edge between determinism and chaos. Let us briefly
review his analysis.

Recall that the A parameter represents the probability that a rule maps
a neighborhood to the nonguiescent (active) state, which in the lingo of
percolation theory we might dub the occupied state. Thus, if A = 0.5, half
of the rules will map any state into an active state, while the other half
maps into the quiescent state. If we assume ergodicity, i.e., if we assume
that the time average of the dynamics is well-represented by an average
over the configurations, A may be thought of as the occupation probability
in two-dimensional percolation, as studied in Chapter 7. '

The marginal (unconditional) entropy of a site j is obtained simply by
calculating

8
H(x)) = =)_p;()logp,Q) , (11.1)
=1

where p;(i) is the probability for site x; to be in state i. These probabil-
ities can be obtained by running the CA long enough and sampling the

probability distribution. Finally, the average of this entropy over all sites
is

1 N
(H) = = D H(x) . (11.2)
J

11.1 Information Processing at the Edge of Chaos

30} -
25 | . -

20 .

H\)

15 F n

1.0 -1

05 .

o.o i] 1 1
0.0 0.2 0.4 0.6 0.8 1.0
A

FIGURE 11.1 Bound for the average per-site entropy as a function of A (in
bits).

The entropy per site must be bounded by the entropy that is obtained
if it is assumed that for a random rule each of the nonquiescent states
is taken on with equal probability. Thus, the entropy of any rule must
always be smaller or equal to this, and we find for the average per-site
entropy as a function of the A parameter

(H) < —(1 — A)log(1 — A) — Alog(A/7) = H(A) . (11.3)

Indeed, the latter expression is just Eq. (11.1), with p(0) = 1 — A (the
probability to map to the quiescent state) and all other p(i) = A/7. The
bound in Eq. (11.3) is shown in Fig. 11.1. While the entropy of random
CA rules is not uniform below this curve, it shows quite obviously that
at high A the value of a site at any point in time is indeed completely
random: the entropy is close to its maximum of 3 bits (every one of the
eight states is equally probable).

Langton’s entropy graph reveals more than this, though. It can be seen
that there are essentially two kinds of dynamics that occur in the CA, one
with quite low entropy H = 0, and the other with approximately H > 1
(see Fig. 11.2). Very few rule tables produce dynamics with0 < H < 1, and
indeed an analysis of a trajectory of H, by changing A via the table-walk-
through method, reveals that the entropy usually discontinually jumps
from zero to H = 1, in a manner akin to first-order phase transitions. This
behavior stops if the starting point of the trajectory is A = 0.6, very close to
the percolation threshold p, =~ 0.59 for two-dimensional regular lattices.

267

268

11 Adaptive Learning at the Error Threshold

LA AR SRR R LR RAl RARRA LRRRRRARRERARRN ARNE)

'ERWH FUNNY FRERTS b i ST N

(=
LN P L AL AR P LR SRR AR N BLELALILE RLBLALALE B

IR FEESY FYTTI SURTY FUNTI FUTTE AEARE SRRV PURTE UTY

0 0.102030405086070809
A

FIGURE 11.2 Average entropy of 10,000 randomly chosen rule tables
of the eight state two-dimensional CA with von Neumann neighborhood
(from Langton, 1992).

This seems to suggest that once the dynamics allow for an infinite cluster,
no rule can be found anymore that keeps the entropy of the lattice low,
as all sites are effectively connected.

Most interesting is the behavior of the (average) mutual entropy be-
tween a site at time t and a site at time ¢t + 1, or else a site x; and its
adjacent site x;.;, for example. In both cases we can think of a site as a
sort of information transmission channel, either in time or in space. The
data collected in Fig. 11.3 (for the temporal channel) reveals that there is
a maximum in the mutual entropy at around a value of A = 0.25, a value
on the boundary of the deterministic regime and the complex region that
liesbetween 0.2 < A < 0.4, and not far away from the chaotic regime. This
data can also be interpreted in a slightly different way, however. Let us
calculate the mutual entropy which would result if the correlations that
are detected are entirely due to the quiescence condition, which dictates
that a quiescent site surrounded by quiescent sites only should return to
the quiescent state. In this case, we can calculate the conditional entropy
exactly, as follows. We denote an active state by i or j in general, whereas
the quiescent state is denoted by 0. Then, the channel matrix (matrix of

11.1 Information Processing at the Edge of Chaos

1

avg Ml

J—lJ-LlLl-I.LLL‘ JJ.I.LI] llLuJJLLLLLLLLLL‘I

M W e 0 N OO

LARRRRRAY AAMRS RARRSLALES LARLE LARAS LARAS LARLS RRLAYN LA

—

FIGURE 11.3 Average mutual entropy of 10,000 randomly chosen rule tables
(from Langton, 1992).

conditional probabilities) can be written as

Poo Pio \ _ [1-2+2Q-=1)* [A-2Q1-1)*]/7
(Pou pij)—(1-4 A7 o (119

where the first index refers to the site at t + 1 and the second index to the
site at time t. These probabilities can be obtained with a little reflection.
For example, py|o, the probability that the site at t+1 is quiescent given that
it was quiescent at time t, is the sum of two terms: 1 — A is the probability
that this happened randomly, while A(1 — 1)* is the probability that this
happened as a result of the quiescence condition.? All other probabilities
are obtained in a similar manner. Then, we can calculate

H@xq| % =0)=—(1 —0o)log(l — o) —olog(o/7), (11.5)

where we defined

o=i—A(1-2)*. (11.6)

?Obtained as (1 — A)* — (1 — A)(1 — A)*. The second term removes from the probability
that the state returns to quiescence randomly the probability that it did so as a result of
the quiescence condition, to avoid double counting.

269

270

11 Adaptive Learning at the Error Threshold

Also,
He % =1) = —Q — A)log(1 — X)) — Alog(r/7), 11.7)

i.e., the entropy of a site at t + 1, given that the site was previously an
active site, is just the unconditional entropy (11.1). Then, the conditional
entropy H(t + 1|t) = H(xp4 |%) is

H(t+1]t) = (1 — AHX41]1 % = 0) + AHXe 41| X = 1) (11.8)
such that

H(t:t+1)=H({+1)—-H(t+ 1|t
=(1- A)(H(XH-J [% =1) — Hxea | 2 = 0)) (11.9)
=I(A) .

This just expresses the correlation between generations due to the qui-
escence condition only, which results in the difference between o and A.
Eq. (11.9) is shown in Fig. 11.4, which agrees well with the envelope of the
data shown in Fig. 11.3, even though the maximum of the distribution
seems to be at a slightly smaller A than the experimental results sug-
gest. Thus, we might surmise from this that some important correlations
exist in random CA at the edge of chaos that are not due to the quies-
cence condition. We conclude from this example that in a computational
chemistry, the optimal regime requires a tradeoff between information
storage and information transmission. Accurate information transmission

1.0 T —T L T

0.8 L 1

)

0.4 | .

0.2 -

0.0 A 1 e

0.0 0.2 0.4 N 0.6 0.8 1.0

FIGURE 11.4 Mutual entropy calculated from Eq. (11.9).

11.2 Adaptation to Computation in avida

requires low levels of noise: a low entropy environment. In order to store
as much information as possible on the other hand, entropy should be as
high as possible, as only a system with many states can carry much infor-
mation. This tradeoff is apparently ideal in the computationally complex
regime, a regime that allows computation universality. We shall see this
signature even more clearly when we investigate the learning capability
of populations of self-replicating strings.

11.2 Adaptation to Computation in avida

The question that Langton asked with respect to the computational abili-
ties of cellular automnata can also be asked in avida. What is the mutation
probability at which a population of self-replicating strings best develops
computational capabilities? The tradeoff between entropy and informa-
tion will again become apparent: short programs have a relatively smaller
mutation probability, and as a consequence a lower entropy. Thus, in or-
der to store more information, the strings will tend to increase their length.
Yet, there is a limit to this: the strings can only successfully self-replicate
if the information stored in the genome can be transmitted accurately
enough into the next generation. Thus, we would like the mutual en-
tropy between one generation and the next to be maximal while also
maximizing the entropy per string.

Rather than focusing on the entropy in the following experiment, we
shall instead analyze the adaptability of the population, which can roughly
be defined as the rate at which the population absorbs information from
the environment. If this rate is maximal, we presume that the information
transmission rate is also maximal, as the process by which information
enters the genome is the same as that which provides the noise in the
channel. In the lingo of Information Theory, the noise is also the message
Source (see Section 3.8).

Learning with Copy Mutations

We can investigate the learning rate of the population for two different
kinds of mutation: we shall see that these lead to qualitatively differ-

271

272

11 Adaptive Learning at the Error Threshold

ent results. Let us first investigate copy mutations. Intuitively, we expect
that the population learns rather slowly at low mutation rates, whereas
very high rates should make the storage of any acquired information
tremendously taxing. Thus, we expeét to find a window in mutation rates
at which learning is optimal. As adaptation is an intrinsically stochastic
process, it is not straightforward to find a good measure for the learning
capabilities of a population. Indeed, in experiments with tierra it was found
that the average time for the population to learn a specific task was not
a good measure, as the average and standard deviation were of the same
order [Adami, 1995a]. This of course just reflects that the distribution of
learning events has a long tail (power-law behavior). Still, a good mea-
sure for the learning capability can be found in the form of the learning
fraction. This is a statistical measure that counts the fraction of runs in
which a particular task has been achieved before a certain cutoff time.
Imagine, for example, that we conduct ten runs, identical in all respects
save the random number seed, at a specific mutation rate. Then, we can
ask what fraction of the ten runs succeeded in acquiring, e.g., the NOT
task before a fixed number of updates have elapsed. Thus, if the cutoff
time is X updates, we define the learning fraction

m
fr®) = —, (11.10)

where n is the total number of runs of this type, and m is the number
of runs that were successful. In this manner, a learning fraction can be
defined for each task, and the adaptive characteristics of the population
mapped out.

To conduct this experiment, we have to decide on a world size, a
suitable ancestor, and a number of mutation rates to test. The dependence
of the adaptive capabilities on the population size is an interesting topic
in itself, and shall be left as a project (Problem 11.1). Here, we shall
test only one world, a grid of 40 x 40 programs. As we expect to take
many runs per mutation rate, and let each of those go on for a sufficient
number of updates such that the population has a good chance to acquire
the relevant task, it is imperative that an experiment such as this one is
prepared diligently in order not to waste CPU cycles. Thus, it is important
to run tests to determine the range of mutation rates to investigate, as well
as to time such test runs in order to estimate the CPU time necessary to
accomplish all planned runs. Finally, we have to decide on a criterion to

11.2 Adaptation to Computation in avida

determine at what point in time a population has acquired a task. At our
disposition we have such measures as

¢ the time at which the dominant genome can perform the task.

e the time at which a threshold number (say 10) figured it out.

e the time at which more than 50 percent of the population can do it.
e the time at which almost all programs are proficient in this task.

In most situations, all these measures are triggered in a relatively short
period of time, as Fig. 9.3 shows. However, sometimes tasks (such as NOT
in that figure) are mastered by only a background number of programs,
and take over only at a much later time. For example, the NOT task in
Figure 9.3 was learned by & 3 percent of the population starting at update
4,000, enjoyed a brief burst of dominance at update 6,000, but withered in
the background up until update 26,000 (not shown in that figure), when
it suddenly jumped to 80 percent. In such a case, the measures proposed
above differ substantially in their assessment of when a task was learned.
In most cases, a task is only unlearned if it is superseded by a more
powerful task. Thus, we choose as a criterion that a task is learned when
the dominant genotype acquires the task for the first time.

For the NOT task, we set up 20 runs per mutation rate with rates ranging
from low (R = 0.0025) to high (R = 0.06). As a cutoff, we set 10,000
updates, since NOT is usually learned before that at the optimal mutation
rate. What this optimum is, and how it is determined, is the object of this
analysis. Indeed, what we find is that there is an optimal mutation rate
only for a fixed length of the code, as the mutation probability for each
string is 1 — (1 — R)® = 1 — F, where F is the fidelity of copying for a string
of length £. Thus, instead of plotting the learning fraction as a function
of R, it is much more instructive to show it as a function of R¢, as the
genomes can change their length during evolution.

In Fig. 11.5 we show the learning fraction fjox(R€) for the NOT task in
an experiment where we took 20 runs per mutation rate.3 After collecting
the data, each run is assigned an error probability Rf obtained from the
mutation rate and the average length of the strings in that particular run.
Note that the average length does not necessarily reflect the length of
those programs that acquired the task accurately, but is a good measure

3This data was obtained by L. Borissov as part of a homework project.

273

274

11 Adaptive Learning at the Error Threshold

1 1 1 T I

— — exp(—Rt)(1—exp(—RL)) |
——=— Reexp(—Rt) T

FIGURE 11.5 Learning fraction fox (R) for the NOT task. Error bars are +1 run
per bin. The data are fitted with Eq. (11.11), with an overall factor as the only
fitting parameter. The dashed line is a fit to the capacity of the “equipartitioned”
genetic channel, Eq. (3.47).

of this in most cases. Finally, the runs were binned according to their R¢
value, so that in each bin there were enough runs to estimate the learning
fraction. The error bars in Fig. 11.5 are simply 1/n(R¢£), where n(R£) is the
number of runs (in each bin) centered around R¢. Interestingly, most runs
‘manage to adjust their R¢ to a value between one and three, whereas runs
with an R¢€ much below or much above these values are correspondingly
rare. This type of behavior will be the center of our attention in the next
section.

The data suggests that the learning fraction follows a geometric law
of the form

fiR) ~ Ree™® | (11.11)

which is maximal at R€ = 1. It is tempting to believe that the learning
fraction is proportional to the amount of information shared between
the population and the environment. As this information, in order to
be preserved, must also be shared between generations of strings, we
might surmise that the learning fraction is just proportional to the mu-
tual entropy between generations in the genetic channel introduced in
Section 3.8. However, this entropy does not fit the data well (see dashed

11.2 Adaptation to Computation in avida

line in Fig. 11.5), which can be traced back to the simplifying assumptions
made in its derivation. In realistic channels, the maximum of the distri-
bution appears to be shifted from R¢ = 1n2 to R¢ = 1. The form (11.11),
while not obtained from a purely information-theoretic argument, can
be interpreted as the Poisson probability that a daughter string has ex-
actly one mutation. Thus, the experiments suggest that the most effective
learning seems to occur when the strings are of such a length that there is,
on average, exactly one mutation per string. As Fig. 11.5 shows, the pop-
ulation can still exist (albeit strenuously) up to rates significantly higher
than the optimal one. This is different if the mutation affects not only
the daughter (as in the copy process), but all programs indiscriminately.
This is the case if the population is subject to Poisson-random bit-flip, or
point mutation events, that we can liken to cosmic-ray mutations. What
we shall see there is that most effective learning occurs right at the edge
of chaos.

Learning with Cosmic-Ray Mutations

Cosmic-ray mutations can be turned on in avida by editing the appropriate
line in the “Mutations” section of the genesis file (see Section 9.2 and the
Appendix). Here, we shall study their effect on learning in the absence of
copy mutations.

In contrast to copy mutations, cosmic ray mutations are characterized
by a flux rather than a rate, as its units are

events

= — — (11.12)
unit time x site

Thus, the flux is determined only if we choose an appropriate unit of time
in avida, which is the update. As explained in more detail in the Appendix,
an update is the amount of time necessary for each program to execute
a fixed slice of CPU time, here 30 instructions. The latter choice is, of
course, arbitrary. With such a rate, the probability that two mutations are
spaced by a time t is exponentially distributed, i.e.,

P(t) = R£e™ R4, (11.13)
and the average time between two mutations hitting a particular string of
length £ is

t) = (11.14)

RE
RE

275

276

11 Adaptive Learning at the Error Threshold

For the experiments we analyze here [Adami and Brown, 1994], the only
task to be acquired is the addition of two numbers provided in the input
buffers. In order to get there, we reward (as earlier) intermediate steps
that lead to the establishment of I/0 bperations culminating in programs
that echo. For a population of 40 x 40 programs, the learning fraction
as a function of mutation rate is depicted in Fig. 11.6 for three different
cutoffs: 10K, 20K, and 50K updates. Note the sharp dropoff of the learning
fraction as the critical mutation rate is reached. This was to be expected,
as the population can no longer survive at a rate higher than the critical
one, and learning is throttled trivially. Note also that the unit for the
mutation rate in this graph is mutations per executed instruction, which
turns out to be larger by about a factor of 10 than the rate defined by
Eq. (11.12).

This situation is clearly qualitatively different from the case of copy
mutations examined earlier, where the mother programs could still func-
tion even if all the daughters were flawed, and learning decreased
exponentially fast away from the optimal rate. For point mutations, the
optimal rate appears to be right next to the lethal one: learning happens
most effectively if the population is almost but not quite melting from the
mutational pressure, a population balanced at the edge of chaos—swayed,
but holding on.

12 T T 1.2 Y T 1.2 -— T
1.0 1.0 ®) 10
0.8 0.8
Jf06 206
0.4 0.4
0.2 0.2
0'010" 1S° l ula‘ 0'010" S 1cl>‘ 0'010" o >
R [107Y] R, [107Y] R, [107%]

FIGURE 11.6 Learning fraction vs. mutation rate for point mutations. (a):

fiok (R); (b): faok (R); €: fsox (R).

11.3 Eigen’s Error Threshold

11.3 Eigen’s Error Threshold

While we have now observed the conditions that are most conducive
to information acquisition by genomes, we have not talked about what
actually happens in adapting populations as far as the average string
length is concerned. Our goal will be to study the'dynamical evolution of
populations subject to a fixed mutation rate R. It was suggested by Eigen
(1971) that real evolving populations actually manage to evolve towards
this critical point, that genomes literally adjust the landscape they evolve
in in such a way that the learning rate is near maximal. How this can, and
does, happen in molecular evolution in general, and avida in particular,
is the subject of the following sections. Before we focus on the dynamics
of evolving populations, however, we need to review the concept of the
error threshold developed by Eigen [Eigen and Schuster, 1979; Eigen et
al., 1989a).

Imagine a population of self-replicating molecules under the con-
straint that their total number N is fixed (this is not necessary for the
analysis, but will be assumed throughout here). Let each type of molecule
(the genotype) be denoted by an index i, so that the abundances of
genotypes n; satisfy the conservation law

d __ d&
EN:E;,Q,:O, (11.15)

where N, is the total number of genotypes in the population. This number
is generally not fixed, but can change during evolution. Equivalently, we
could have summed over all possible genotypes N = D¢, where most
of the n; in that case would be zero. Let us write down a rate equation
for each genotype, taking into account its production (by self-replication
with rate ¢; and fidelity F), and its removal due to the condition (11.15),
with rate (¢). Thus,

A= (Fe — (€) ni+ Y b, (11.16)
i#k

where F (which usually only depends on the length of the molecule) is
given in terms of the error rate per copy R as usual

F=(1-R)¢, (11.17)

277

278

11 Adaptive Learning at the Error Threshold

and ¢y is a transition matrix element which is the probability for a mu-
tation from genotype k to i, and that is necessary in order to achieve
conservation of error copies. Indeed, every mis-copy of a genotype i (due
to F < 1) must appear as some other genotype k:

Y e -Fn=NEe1-FP=)_ Y dun. (11.18)
i T ki

This equation, together with Eq. (11.16), ensures that)} ;n; = 0, as re-
quired by (11.15). We can use it also to write a “mean-field” equation
for the abundances without referring to the mutation matrix ¢ explicitly.
Assuming that ¢ is independent of and equal for each genotype i (an
assumption that is certainly wrong for each genotype, as mutations do
not lead to arbitrary genotypes but only to those close in genotype space),
we can write

1
D_dune ~ =N(€)(1 = F) (11.19)
ki g
such that
ni(t) = (Fei — (€))ni(t) + %(e)(l -P. (11.20)
g

This equation cannot be solved straightforwardly, as (€¢) depends on time
itself. However, it does allow us to estimate the genotype distribution
function of average genotypes, i.e., genotypes of fitness about (¢), for
which n; & 0. For those,

N 1-F (11.21)
Ng1—oF
where we introduced the superiority parameter
o= — . (11.22)
(€)
Note that the distribution does not hold for fittest genotypes witho; = F~!,
as for those the condition n; = 0 does not hold. Rather, we can use

Eq. (11.20) to formulate a condition for successful survival of the informa-
tion stored by the population. If we assume that most of the information is
stored in those genotypes that replicate most successfully, i.e., the dom-
inant (most abundant) genotypes, this information can only be stored
accurately if the genomes that bear it can replicate this information with

11.4 Molecular Evolution as an Ising Model

a rate exceeding zero, not counting the average influx from mis-copies. In
other words, the precise message stored in the most successful genomes
will be perpetuated only if these genomes have a ‘nonvanishing growth
rate. From Eq. (11.20), we see that this is the case if

Fepest — (€) > 0, (11.23)
or
ObestF > 1, (1124)

where we introduced the superiority parameter opest for the most
abundant genotype, termed the quasispecies by Eigen. In terms of the mu-
tation rate R and the length of the code, this condition can approximately
be written as* (using Eq. 11.17)

Réyest < log, Obest (11.25)

which puts a limit on the length of the code as a function of the mutation
rate R: this is Eigen's error-threshold condition. Essentially, it implies that
the concentration ny,es /N of the quasispecies, i.e., the dominant genotype,
decreases for R and o fixed, up until it reaches zero if R€ = log, Opest, i-€.,
at the error threshold.

11.4 Molecular Evolution as an
Ising Model

Eigen suggested thus that natural populations automatically move to-
wards the error threshold R¢ = log o, which, if true, would also imply that
the populations maximize their adaptive capabilities, as usually logo ~ 1
(as we saw in Section 11.2). This behavior has been observed exper-
imentally in populations of bacteriophage Q8 RNA replicating in QB
replicase [Domingo et al., 1976, Domingo et al. 1978], as well as popula-
tions of RNA viruses [Domingo et al., 1980]. The data show, for example,
that phage QB operates exactly at its error threshold, as evidenced by

‘In the last equation, the logarithm is the natural one and we made use of the ap-
proximation —log,(1 — R) & R + O(R?), which is quite accurate for usual mutation
rates.

279

280

11 Adaptive Learning at the Error Threshold

the fact that the concentration of the master sequence is virtually un-
detectable. The way that adapting populations can influence the error
probabilities affecting their genome is, of course, by changing the length
of the sequence, and it appears that adapting populations tend to increase
their length up to the limit imposed by condition (11.25). From our earlier
investigations, we are aware that this is a necessary behavior in order to
store as much information about the environment as possible. The ques-
tion that we would like to ask in the following concerns the structure of
the fitness landscape that enables such a behavior.

In order to investigate such a question, we need to construct a dy-
namical model that treats the evolution of molecular strings directly, and
where we can ask about the most probable state of an ensemble of strings
in equilibrium. The model described in the previous section can serve
such a purpose, if we refine it by including a fitness landscape and solve
it explicitly in the limit t — oo, rather than settling for a mean-field
treatment as we did above. A particularly enlightening treatment of this
model in terms of the statistical mechanics of the Ising model is due
to Leuthatisser [Leuthdusser, 1986; Leuthdusser, 1987). There, the binary
genome of a string is mapped to a spin chain: a string of symbols x;, where
each x; can take on the values —1 and +1 (to be thought of as little magnets
that can take on only two orientations) of length £. For such strings, the
mutation matrix ¢; introduced earlier can be written in a simple manner,
using the genetic distance between sequences i and j. With d denoting
this distance, the probability of obtaining sequence i from sequence j can
be obtained in terms of the probability to take d mutational steps. Thus,
¢;j will be proportional to the probability that exactly d out of the £ spins
are flipped, which is

PG,i) = (1 - R)*“R?, (11.26)

where R is again the probability to flip one spin (i.e., one symbol). ¢; is
then obtained by multiplying this probability by the replication rate of
genotype i (as this will determine how many erroneous copies will be
produced per unit time) such that

e Rt [RT
¢j=¢€(l —R) [I—R] (11.27)

11.4 Molecular Evolution as an Ising Model

For these two-valued chains, d is given by the Hamming distance between
the two chains, which can be written as .

dGi,j) = = (Zx"’ ,‘{’) : (11.28)

This expression is easily verified, as two positions x,(j) and x,(:) that are
different will result in a product equal to —1, whereas if they are the
same, the product is +1. Thus, for example, if two sequences differ only

in one position,
Zx"’xfg’_ ~D)x14+1x(=1)=£-2, (11.29)

such that d = 1. We can now return to Equation (11.16) and write it as a
matrix equation. But first, we return to the discretized form

dad, j
nt+1)=(Fe+1— (€)n,+zFe,[] n;. (11.30)

i] —-R

A redefinition of n;(t) (with N the total number of molecules),

ni() — pi(t) = ﬁe p{/ dr (e)(t)] (11.31)
simplifies this equation considerably, leading to
pilt+1) = Wp;(t) (11.32)
J
and
R 746.)»
W; = Fe; [1—3] (11.33)

Note that the sum over j in Eq. (11.32) includes the term i = j [unlike the
sum in (11.16)], which just gives the diagonal element F;, as d(i =j) = 0.

Let us now follow Leuthdusser and write W;; in a form that is analogous
to matrices that arise in the physics of real spin systems: magnets. First,
we recognize that

R 746D R 142 O [LR TE00
RSN i B _ 11.34
[I—R] [I—R] exp Og[l—R] 2) au3d

281

282

11 Adaptive Learning at the Error Threshold

with obvious notation for the vector product of ¥ and x?. Finally, we
can introduce the parameter

1-R

p = log (11.35)

[which is positive for the mutation rates of interest (R < 0.5)}, so that
w, =e PHy (11.36)

with

_Lzo 30 loge® &

5 - ﬁlogR(l —R). (11.37)

Then, the time evolution equation can be written as

Hj =

Pt+1)=Wp(t), (11.38)
where
(W); = Wyt +1,1) (11.39)

is the transfer matrix that takes generation t into generation t + 1, and
therefore

Bt =tn) = W'B(0) . (11.40)

The mapping of concentrations p from one generation to the next can be
described pictorially as in Fig. 11.7, where in the horizontal dimension
we spread out the spin chain, whereas the time evolution of the con-
centrations takes place vertically. In order to see the analogy with the
two-dimensional Ising model, and to analyze the time development of
the concentrations p(t) explicitly, we need to specify a replication land-
scape €(x). A simple example landscape can be constructed by defining a
function that returns the fitness of a string X as a function of the distance
of that string to a master sequence E, the fittest string in the landscape

] =) 2
€GOy = gz ® 5 (11.41)

Note that because of the redefinition (11.31), the fitness € for a string with
no replicative ability is 1 rather than 0, while the maximal fitness (x = §)
is

€max = CK/Z . (11.42)

11.4 Molecular Evolution as an Ising Model 283

The dynamics of the spin chain, or alternatively the time evolution of
the molecular string, can now succinctly be described by the equation

p(t)=e PHpt=0), (11.43)
with the Hamiltonian
n-1 .) K 4 L
—BH = —p Y (TR -Z*D — — 3" gaxD), (11.44)
1=0 2ﬂ£ k#k

and] = % With a redefinition x; — Exxx, the Hamiltonian can be rewritten
in precise analogy to the Hamiltonian of the two-dimensional Ising model,

-1 £
H= nz:(]x;;(i) FOD g § xg)xg)), (11.45)

=0 k;ék’

with], the interaction in the horizontal direction equal to] = %, and J,
the interaction in the vertical direction given by K/28¢2. The interactions
Jx and], are indicated in Fig. 11.7.

RN AR R RN Y
AR RRRARRARERN
AR RARRARRRRARERE

PO E R L | W,
AR AR RNy
PERLVEIE LR it
PHIEHE L | e@

X, Jx — xi ‘]x — Xy

FIGURE 11.7 Time-evolution of the spin chain, with the sequence depicted
horizontally, while the time-evolution of the concentrations proceeds verti-
cally. The lattice may be viewed as a two-dimensional Ising crystal, with
interactions in the horizontal directions (interaction between adjacent spins)
mediated by J,, while interactions in the vertical direction are specified by J,.

284

11 Adaptive Learning at the Error Threshold

Note that we left out the constant term £/21ogR(1 — R) from the
Hamiltonian, as it is independent of ¥, and therefore unimportant for
the dynamics or the analysis that*follows. For such simple landscapes as
defined by (11.41) (sometimes called Mattis landscapes [Mattis, 1976]),
where the number of degenerate maxima does not grow exponentially
with the length of the molecule (in the landscape above, there is only one
maximum, independent of £), adaptation will result in molecules that
tend to minimize their length. This theoretical behavior is borne out by
the early experiments with replicating RNA of Spiegelman [Mills et al.,
1967]. There, RNA molecules taken out of their natural metabolism and
allowed to optimize via repeated sequences of selection and replication
shrink in length and shed all unnecessary genes. Intuitively, this can
be easily understood by considering the competition between the speed
of the search and the size of the space to be searched, as a function of
sequence length €.

For constant string length ¢, the number of possible strings is 2¢,
whereas there is only one maximum _é On the other hand, as the string
length increases, the speed of search through the space increases, as the
probability for mutation is 1 — (1 — R)® per string. For the landscape de-
scribed above, this gain in search speed (when increasing the length ¢)
is swamped by the corresponding increase in search space, if we assume
that there is one solution &, (with fitness independent of ¢) in every sub-
landscape of fixed €. Then it would be of no advantage for molecules
to grow in length, as the maxima waiting to be discovered in the land-
scapes with high £ are so sparse that they might as well be absent. Thus,
the landscape looks essentially flat, a situation described in Section 8.6.
Indeed, we noticed there (Fig. 8.7) that the length of the strings drops
consistently during evolution, much like in the Spiegelman experiments.
In order for there to be an evolutionary advantage to a higher search
speed, the maxima in high-dimensional genetic spaces need to be cor-
respondingly frequent; in other words, there ought to be a degeneracy of
maxima that increases exponentially with the string length. Such a situ-
ation is intuitively appealing. What this implies is that a sequence with
an advantageous chemistry has many equivalent sequences that may or
may not be very close in genetic space.

With respect to our computational chemistry in avida, this amounts
to saying that for any string that triggers the bonus for a computational
task, there are many equivalent strings (but with different genomes) that

11.5 The Race to the Error Threshold

trigger the same bonus. In a sense the landscape must be of a form that
there are many overlapping maxima. Before constructing such a landscape
for the model described above, we should pause to discuss other results
obtained with the statistical treatment of molecular evolution.

In the above discussion, we have stopped short of actually solving the
Ising model in two dimensions with a Mattis landscape. These steps have
been carried out by Leuthausser and by Tarazona (1992) and we need
not repeat them here. What transpires from the solution of this model is
that the error threshold discovered by Eigen is in fact, in the context of
the Ising model, related to a second-order phase transition separating an
ordered regime (below the critical error probability) from a disordered
one. As the ordered phase looks much like a frozen system, this transition
is often called a freezing transition. Indeed, the critical parameter in this
model is the “temperature”

K
T (1-RK'
and the critical point is reached as # — 1, which we recognize as the

error threshold (in the limit of small R) as K ~ logo.
The disordered phase is characterized by a vanishing magnetization

[4
mz%ZSk(xk)%\/l—OZ, (11.47)
k=1

0 (11.46)

where (...) denotes the statistical average over the population at a given
generation. Thus, if the magnetization vanishes, it implies that the strings
take on all possible instructions at each site, i.e., all correlations have
vanished and the population is essentially random. On the other hand, in
a population replicating with high fidelity, m is approaching 1, as almost
all sequences are identical to the master sequence _.f;"

In the next section, we describe the Ising model with a fitness land-
scape different from the Mattis landscape, and that features degenerate,
overlapping maxima.

11.5 The Race to the Error Threshold

Examples of landscapes for which the number of degenerate maxima
is exponential in the length of the sequence are spin glasses [Anderson
1983; Mézard et al., 1987). Such landscapes have a number of attractive

285

286

11 Adaptive Learning at the Error Threshold

features, and are also known to be fractal. As a consequence, they ap-
pear to be ideal candidates for evolutionary landscapes. However, explicit
models for molecular evolution such as the Eigen-Ising model described
above cannot be solved analytically, even approximately, for such land-
scapes, and thus this prospect has not as yet been realized. Still, other
landscapes that feature overlapping exponentially degenerate maxima
that are amenable to analytical calculation do exist [Adami and Schuster,
1997], and we shall investigate their consequences in the following.

The idea is, quite generally, to investigate the Eigen-Ising model for
variable string length £, and to let the dynamics pick out the most favor-
able sequence length. There are two scenarios that we can imagine here.
On the one hand, we may start with a population that is monotypic and
with a single length, and allow mutations to create strings with shorter
and longer sequences than this ancestor. The mutants in the tail of such a
distribution then could adapt to become fitter than the original sequence,
in which case the original sequence length will be driven to extinction and
the new length will dominate. Of course, mutants around this new qua-
sispecies will again provide the possibility for strings of differing length
to compete with the dominant length. In such a scenario, a pressure to
increase or decrease length will result in a sequence of takeovers that will
monotonically increase or decrease the length of the dominant sequence.
An equivalent scenario is obtained without assuming that mutations can
change the length of sequence, if we start the evolution with a uniform
distribution over sequence lengths of equally fit sequences. The dynam-
ics will then pick out the optimal one, without this optimal length having
to arise out of a mutational event. While in both scenarios the optimal
sequence length is reached, the dynamics of the population itself may be
quite different.

The competition between sequence lengths in a landscape turns out
to be a delicate tradeoff between search speed and space as mentioned
earlier, and can be likened to a race. Indeed, because of selection imposed
on the landscape, the first string to reach a higher plateau of fitness will,
in general, take all, i.e., it will drive all other strings into extinction even
if they have a much higher potential of fitness in the long run, and thus
end the competition. In the language of critical transitions in the Ising
model introduced above, such a winner-takes-all event is akin to a freezing
transition. If the overall landscape is a superposition of landscapes with
different ¢, and there is only one maximum per £, then the short strings

11.5 The Race to the Error Threshold

will invariably win as they find the maximum the fastest. What if the
density of maxima does not drop exponentially with rising string length ¢,
but stays roughly constant? In that case, the increased search speed due to
the higher mutation probability p(£) =~ 1 — exp(—R¢) will result in longer
strings finding a maximum first, and the dynamics should therefore favor
an increase in sequence length. Note that this implies that such fitness
landscapes are in effect fractal, as it is assumed that new maxima can
be found for any ¢, and the landscape is effectively infinite. Still, we
have seen that there is a limit to the length of self-replicating sequences,
which is the Eigen threshold. An increase in length over this limit would
result in the information stored in the sequence to be dissipated, and the
adaptive powers of the population to be lost. Thus, the scenario described
above can be described as a race towards the error threshold.

Mathematically, we can obtain such a fractal, exponentially degener-
ate landscape by summing the Mattis landscape over g different E vectors
with g = 2% and yu a parameter 0 < u < 1, i.e., the number is exponential
in the string length:

=Y [ez‘r@""” —1]+1. (11.48)
£k,

The important aspect of this landscape is its 2°*-fold degeneracy,
which is quite unlike the degeneracy in the corresponding Hopfield
landscape [Hopfield, 1982],

. K .
€(X) = exp [_ZF >, (e-x)z} , (11.49)
£ &

where the sum over the maxima is inside the exponential. Such a
landscape does not lead to exponential degeneracy.

An explicit solution of the Eigen-Ising model with a particular fit-
ness landscape involves obtaining the equilibrium distribution p (t,) for
t, large, by calculating the right-hand side of Eq. (11.40) given an initial
distribution 4 (0), the idea being that as t — oo, only the distribution
with the largest eigenvalue of the transfer matrix W”" [see Eq. (11.40)]
will survive this limit. The corresponding eigenvector is the most proba-
ble equilibrium distribution we are after. A calculation along the lines of
Leuthdusser shows that with the landscape (11.48), the critical parameter

287

288

11 Adaptive Learning at the Error Threshold

0 is

_ ke
KA -p)'
and the largest eigenvalue A, becomes (in the vicinity of the § = 1) [Adami
and Schuster, 1997)

0 (11.50)

e ~ 2" K(1 —) exp [%K(l - w)*Q1 - 9)2] . (11.51)

It is this function, therefore, that determines which length £ will
dominate when we calculate the average length

_ X {ep)z
T)z
This average is akin to the Gibbs average Eq. (4.51), and is maximal
where the largest eigenvalue A, of Eq. (11.51) is maximal. Let us plot
A¢ as a function of 8 for different values of the error threshold, and
with the parameters 4 = 0.1 and K = 1, versus the critical parameter
6 = £/L. [implicitly defining £, via Eq. (11.50)]. As mentioned before, the
average length of the sequences is determined by the maximum of X,
so the fact that A, is maximal exactly at the error threshold 8 = 1, i.e.,
¢ = £, in Fig. 11.8, shows that evolution in a landscape with exponential

(€) (11.52)

T 1 1 T]
1} i
=y
<
S
<
0 1 1 | L .
0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 11.8 Normalized eigenvalue A¢/A,, as a function of the normalized
molecular length 8 = £/¢, for three different values of the error threshold:
£, = 100 (dotted line), £, = 1000 (dashed), and ¢, = 10* (solid line).

11.6 Approach to Error Threshold in avida

degeneracy drives the average length of sequences towards the critical
length £., which is determined by the error rate.

11.6 Approach to Error Threshold in avida

While the evidence garnered from this theoretical analysis is compelling,
it would be interesting to observe these dynamics directly, in real or
artificial evolving populations. In avida, we can monitor both the fitness
gain o as well as the length of the dominant genotype ¢, such that an
approach to the error threshold, should it take place in avida, can be
monitored.

First, let us take a look at some important characteristics of single runs
in avida, before embarking on a statistical analysis. As we are interested
in the dynamics of length changes of the genome, we should establish
whether a particular genome length usually dominates the population,
or whether the distribution of lengths is so broad that the dynamics
can pick out the optimal one from a population at any time. We shall
find that the former is the case: due to the selection effect, the genome
length distribution is usually very narrow, and an evolution to longer
genomes can only occur if these lengths are created before they can
be populated. For this reason, we turn on insert and delete mutations at
a rate of 5 percent, which should provide a certain amount of natural
width to the genotype length distribution. This is not strictly necessary
(as genome length changes occur spontaneously also without insert and
delete mutations), but it speeds up evolution considerably.

A typical run at a mutation rate R = 0.02 is shown in Fig. 11.9.
The fitness increases very fast at the beginning of the run, during
which the unadapted ancestor of length ¢ = 30 adapts to the land-
scape. Around update 10,000, the length of the dominant program
increases dramatically to absorb the information that gives rise to a
higher metabolic rate. At about update 20,000, most of the informa-
tion has been absorbed, and the landscape essentially appears flat to
the population. Consequently, the fitness stays constant and the length
slowly decreases as the population optimizes its code. In Fig. 11.10,
we can see a cross-section of the length distribution of threshold
(replicating) genotypes at three different times. In the first panel,
the cross-section at an early stage is depicted, with most genotypes

289

Ul

10

10

7

10

Fitness

10

10

-1

10

120

20

e

MLIMA B B B S S B EA B B §

p
.]
1 1 1 1 B
o] 10000 20000 30000 40000 50000
update
T T T |
B A‘M
1 1 1 1
0 10000 20000 30000 40000 50000
update

FIGURE 11.89 Fitness of dominant genotype (quasispecies) as a function of
time in updates (upper panel) and length of average genotype (lower panel).

R = 0.02

250 250 v T T T T 250 T T T T T

10K 45K
200 200 § 200 b
150 150 4 150 b
z
100 100 1
50 S0 B

[e]
30 40 50 60 70 80 30 40 50 60 70 80
t 4

30 40 50 60 70
¢

80

FIGURE 11.10 Length distribution of replicating genotypes at three stages
in the evolution depicted in Fig. 11.9. Early (5,000 updates, left panel), shortly
after the major size transition (10,000 updates, middle panel), and late (45,000
updates, right panel).

290

11.6 Approach to Error Threshold in avida

only marginally larger than the £ = 30 class that was used to impreg-
nate the population. However, a small contingent of considerably longer
genotypes of size £ ~ 70 is already visible. At 10,000 updates, these geno-
types have taken over and completely wiped out the ancestral class of

genotypes, which could not compete with the newly emerged programs ~

with advanced computational chemistries. Note that the average length of
genotypes is larger than the class that dominates around update 10,000,
as can be seen from the lower panel of Fig. 11.9. Thus, many longer
genotypes that do not replicate faithfully are present right after the tran-
sition, but are weeded out in a slow process of purification as time goes
on. At update 45,000, the length distribution of the dominating genotype
is roughly unchanged (right panel in Fig. 11.10), whereas the average
length has dropped considerably.

The theory that predicts that the length of evolving genotypes ap-
proaches the bound given by the ratio between the logarithm of the
superiority o and the mutation rate R,

logo
R ’

€— Lmax =

(11.53)

where
€best

o= (11.54)
can be tested by comparing the length of the dominant genotype £ to
log o after equilibration, i.e., after all or most of the information available
in the environment has been absorbed, for different mutation rates. Let
us first check that Eigen's threshold inequality is never violated by the
population, i.e., that the product R¢ never exceeds the value logo, which
of course changes during the run as more and more fit genotypes emerge.
In Fig. 11.11, we plot R¢ against log o in a scatter plot, where each point is
a pair (R¢,logo) at one point in time in the evolution of a run at a fixed
mutation rate R = 0.01 that continued for 50,000 updates with data taken
every 10 updates. While an approach to the threshold is not apparent in
this view (as the time evolution is not evident), it is clear that

logo > R¢ (11.55)

at all times, just as Eigen theorized (and as we showed in the previous
sections), as points do not venture below the solid line that demarcates
the region allowed by Eq. (11.55).

291

292

11 Adaptive Learning at the Error Threshold

05 06 0.7 08 0.9
Re

FIGURE 11.11 Scatter plot of R¢ versus logo for the evolution of a run at
R = 0.01. The solid line represents the error threshold R¢ = logo.

The theory outlined in the previous section claims more, however.
It predicts that after equilibration, i.e., at a time when all the informa-
tion of the landscape has been absorbed, the population has managed to
approach the threshold R¢ = logo closely, thus maximizing its search
speed and adaptive capabilities. To show this, we take a multitude of
runs at fixed mutation rates and let them continue for 50,000 updates in
the hope that equilibration is achieved. At this point, we average ¢ and
log o over the last 1,000 updates to obtain the equilibrium values for each
run and their variance. A large variance in a quantity indicates that the
run possibly was not quite at equilibrium, and instead was undergoing
a nonequilibrium phase transition. For each mutation rate, we plot the
final pairs ¢ and logo against each other. If the population adapted to
the error threshold, the points ought to lie on a straight line with a slope
given by R, according to the relation

logo =RE. (11.56)

11.6 Approach to Error Threshold in avida

In order to account for an insert/delete probability P (here P = 5 x 1072)
Eq. (11.56) must be replaced by

2P
(1 -R)t

leading to a deviation from the linear law (11.56). Note that there is no
free parameter in this prediction, and the accuracy of the approach to
the error threshold can be measured by how well the fitted R agrees with
the known mutation rate. In Fig. 11.12, we can see this plot for four
different mutation rates: R = 0.0075, R = 0.01, R = 0.015, and R = 0.02.
In each case, the points do, for the most part, lie on the predicted curve,
within the error bars which are taken to be the standard deviation over
the last 1000 updates. The fitted R is within 5 percent of the actual value
used in the runs. Deviations from the predicted behavior can occur for a

logo~R-£+ (11.57)

log(a)

FIGURE 11.12 Log o plotted against £ averaged over the last 1,000 updates
for runs at fixed mutation rates. If the population has approached the error
threshold, the points must lie on a straight line (for P = 0) with a slope given
by the mutation rate. The solid lines are fit to the data via Eq. (11.57) with R of
0.0078, 0.0095, 0.0150, and 0.0217, respectively.

293

294

11 Adaptive Learning at the Error Threshold

number of systematic reasons, foremost among them the possibility that
the population is not at equilibrium when the data are taken. Usually,
this translates in larger error bars in log o, while the average itself is off
the line. Another systematic error is associated with the measurement
of logo proper. As the runs progress, the best genotype is usually very
rare, and epest becomes harder and harder to measure (the vanishing of
the quasispecies at the error threshold is predicted by Eigen’s theory).
Also, the average replication rate is difficult to measure in a population
subjected to high mutation rates, as many genotypes do not replicate
correctly, or else do so inconsistently. For example, a genotype may come
to dominate the population that does not breed true (make exact copies
of itself) due to a faulty algorithm rather than an error rate. The effective
mutation probability for such a genotype is much higher than the rate R
might suggest, an effect that is beyond the scope of Eigen’s theory of the
error threshold.

Finally, let us observe how the mutation rate affects the lengths of
programs on average. According to the theory laid out here, the length of
the programs should grow steadily (as long as there still is information
to be discovered) until reaching the maximum length, which is limited
by the mutation rate. Indeed, Fig. 11.13 seems to confirm this. There,

140

120

100

-

80

60

40

0.000 0.005 0.010 0.0&5 0.020 0.025 0.030

FIGURE 11.13 Average length of programs after adaptation £ plotted versus
the mutation rate R prevailing during the adaptive process, for between 10 and
20 runs at each mutation rate. The solid line is a hyperbolic fit to the data to
lead the eye.

11.7 Overview

the average length of the dominant program at the end of the run is
plotted against the mutation rate, showing clearly that runs at low error
rates develop much longer codes on average, while those evolving in
the high-noise environment cannot progress past a maximum length.
Even though the variation of lengths at each rate is large (reflecting the
different fitnesses achieved) the figure convincingly demonstrates that
R = const.

Notwithstanding the possible systematic trends, the data presented
in Fig. 11.12 and Fig. 11.13 are consistent in suggesting that evolution,
at equilibrium, does indeed adjust the length of the strings in such a
way as to be right at the error threshold, where learning and adaptation
take place the fastest and information transmission is almost optimal
(recall the discussion in Section 11.2). A further increase in the mutation
rate would turn the information transmission into a useless channel, all
information present in one generation would be lost in the next, and the
population would cease to occupy a coherent cloud in genotype space
and drift apart.

11.7 Overview

Adapting populations must make a tradeoff between the accuracy of infor-
mation transmission and the storage of information, which is translated
into a balance between the deterministic and the chaotic regime. Exper-
iments with avida show that, with copy mutations, populations adapt the
most effectively if R€ = 1, unlike the naive genetic channel for which the
optimum is at R¢ = In 2. Eigen’s theory of self-replicating macromolecules
suggests that there is a threshold for R¢: we must find R¢ < logo at all
times. This theory can be cast in terms of the equilibrium dynamics of
two-dimensional Ising models, and such Eigen-Ising models can be solved
for a number of simple model landscapes. A particular choice of an expo-
nentially degenerate landscape with overlapping maxima suggests that
populations of self-replicating macromolecules will always approach this
threshold by adjusting their length to the maximum allowed by the con-
dition. This behavior can be verified in avida, implicitly suggesting that
the artificial chemistry in avida is indeed exponentially degenerate (up to
the “exhaustion” of the landscape) and therefore fractal in the range of
adaptation investigated.

295

296

11 Adaptive Learning at the Error Threshold

Problems

11.1 Determine the behavior of the learning fraction for fixed mutation rate
as a function of population size. As this kind of project can be very CPU-
intensive, be sure to plan number of runs, durations, population sizes,
etc., carefully before embarking on the project. Estimate the behavior
before taking any data by making educated assumptions. Compare the
result with these expectations.

11.2 (a) Verify in avida the MacArthur-Wilson Law, which relates the number
of species N on an island to the area A of the island by the “universal”
relation

N =cA?. (11.58)

The constant ¢ may depend on the type of island, but the expo-
nent z is independent of it, and usually in the range 0.2 < z <
0.4 [MacArthur and Wilson, 1967). If N is the number of geno-
types, what is the exponent measured in avida? Can this result
be understood from first principles?

(b) What is the exponent if you measure the number of species instead?
What do you expect for the exponent as higher and higher levels of
the taxonomic hierarchy are considered?

APPENDIX

The avida User’s Manual

This manual is for version 1.0 of the avida artificial life platform. Permission to distribute
unaltered copies of this source code is freely granted. However, no fee may be charged
for distribution of this software or of data resulting from use of this program, except
at the cost of distribution or by explicit written consent of the California Institute of
Technology.

The accompanying software was originally written and compiled by Charles Ofria
in 1994-97, at the California Institute of Technology. Portions of the source code have
also been written by Dennis Adler and Travis Collier. Previous incarnations of avida
were written and compiled by C. Titus Brown. Please send any questions, comments
or suggested patches to us at avida®krl.caltech.edu

This software is provided as is and without any expressed or implied warranties,
including, without limitation, the implied warranties of merchantisability and fitness
for any particular purpose.

A.1 Introduction

This manual is intended to be an operating guide and an investigative
aide to the avida system. It is structured so that new readers need only
concentrate on the introduction and the beginner's guide in order to gain a

By Charles Ofria, C. Titus Brown, and Christoph Adami.

297

298

Appendix The avida User’s Manual

working knowledge of avida. This introduction contains a quick overview
of the systemn, and the following section contains a fuller description
of both the theoretical design and this particular implementation. The
next group of sections explore some of the design decisions made (which
emphasize those we consider non-intuitive), and explain the specifics on
configuring runs. Finally, the user's interactions with avida (installation,
configuration, run-time use, and output files) are detailed with sample
applications for research.

What Is avida?

The computer program avida is an auto-adaptive genetic system designed
primarily for use as a platform in Artificial Life research. The avida
system is based on concepts similar to those employed by the tierra pro-
gram, that is to say it is a population of self-reproducing strings with
a Turing-complete genetic basis subjected to Poisson-random mutations.
The population adapts to the combination of an intrinsic fitness landscape
(self-reproduction) and an externally imposed (extrinsic) fitness function
provided by the researcher. By studying this system, one can examine
evolutionary adaptation, general traits of living systems (such as self-
organization), and other issues pertaining to theoretical or evolutionary
biology and dynamic systems.

Since the predominant auto-adaptive system available is Ray’s tierra,
and avida is based on similar concepts, we present a short list of differences
between avida and tierra. In avida we provide:

e A two-dimensional environment with local interactions only (as op-
posed to the global interactions in tierra.) This prevents information
from propagating at an exponential rate and allows us to study lo-
calized phenomena. The slower information propagation causes the
population to maintain a state outside of equilibrium (where learning
is optimal) for a much longer period of time. Additionally (in future
versions of avida) local interactions will permit nearly linear increases
in execution efficiency on parallel computers.

e A detailed flexibility in configuring runs. Avida allows the user to select
from a variety of time-slicing methods (which allow for synchronous
or asynchronous execution of creatures), mutation schemes, methods
for placement of newborn creatures, and even the flexibility to model

A.1 Introduction

other auto-adaptive Artificial Life systems such as tierra (to establish

baselines for comparisons.) In future versions, we plan to expand this

emulation to standard adaptive systems such as genetic algorithms,
and allow for other CPU structures.

e The ability to specify fitness landscapes for goals beyond the
optimization of gestation time, along with the theoretical possibil-
ity for open-ended evolution (given a sufficiently complex fitness
landscape.)

e Allowing precise measurements and the collection of statistical infor-
mation (as is required for a scientific research platform.) Avida allows
the user to configure a wide range of output files, and observe almost
any aspect of the soup.

Brief Overview

The avida system creates an artificial (virtual) environment inside of a
computer. The system implements a 2D grid of virtual processors which
execute a limited assembly language; programs are stored as sequential
strings of instructions in the system memory. Every program (typically
termed cell, organism, string or creature) is associated with a processor,
or grid point. Therefore, the maximum population of organisms is given
by the dimensions of the grid, N x M, and not by the size of the total
genome space of the population, as in tierra. For purposes of Artificial Life
research, the assembly language used must support self-reproduction; the
assembly language instructions available are described in Section A.5.

The virtual environment is initially seeded with a human-designed
program that self-replicates. This program and its descendants are then
subjected to random mutations of various possible types which change
instructions within their memory; resulting in unfavorable, neutral, and
favorable program mutations. Mutations are qualified in a strictly Dar-
winian sense; any mutation which results in an increased ability to
reproduce in the given environment is considered favorable. While it
is clear that the vast majority of mutations will be unfavorable —typically
causing the creature to fail to reproduce entirely—or else neutral, those
few that are favorable will cause organisms to reproduce more effectively
and thus thrive in the environment.

299

300

Appendix The avida User’s Manual

Over time, organisms which are better suited to the environment are
generated that are derived from the initial (ancestor) creature. All that
remains is the specification of an environment such that tasks not other-
wise intrinsically useful to self-reproduction are assimilated. A method of
altering the time slice, or amount of time apportioned to each processor,
is described in Section A.3.)

While avida is clearly a genetic algorithm (GA) variation (to which
nearly all evolutionary systems with a genetic coding can be reduced),
the presence of a computationally (Turing) complete genetic basis dif-
ferentiates it from traditional genetic algorithms. In addition, selection
in avida more closely resembles natural selection than most GA mecha-
nisms; this is a result of the implicit (and dynamic) co-evolutionary fitness
landscape automatically created by the reproductive requirement. This
co-evolutionary pressure classifies avida as an auto-adaptive system, as
opposed to standard genetic algorithms (or adaptive) systems, in which
the creatures have no interaction with each other. Finally, avida is an evo-
lutionary system that is easy to study quantitatively yet maintains the
hallmark complexity of living systems.

Contacting the avida Group

The members of the avida group can be reached by email at
avida@krl.caltech.edu. Consult the group’s Web page for changes and
notices at http://www.krl.caltech.edu/avida/. Research articles by
members of the avida group are available via anonymous FTP at ftp://
ftp.krl.caltech.edu/pub/avida/. Please feel free to contact us with
any questions, comments, or ideas you may have about avida. For techni-
cal questions, contact avida-help@krl.caltech.edu. (Technical Support
is not guaranteed with avida, but we will typically try to help with any
problem you may have.)

A.2 A Beginner’s Guide to avida

In this section, we give a general description of the structure of avida and
examine a few of the implementation details.

A.2 A Beginner’s Guide to avida

The avida System

At the highest level, the avida system consists of a grid and a set of inter-
actions between points on the grid. The grid is a two-dimensional lattice
with natural Cartesian coordinates specifying the grid points and periodic
boundary conditions at the edges, resulting in a toroidal geometry. Each
grid point harbors a separate central processing unit (CPU).

This leads to a virtual representation of a standard multiple-
instruction multiple-data (MIMD) parallel machine; the CPUs can be run
either synchronously or asynchronously, closely approximating actual
parallel machines. The closeness of this approximation depends largely
on the granularity, or simplicity, of the instruction set. If a single instruc-
tion can have an extremely large effect on the surrounding environment,
it will be correspondingly harder to approximate parallel execution using
an asynchronous update technique. Section A.3 on time slicing details the
various mechanisms by which these time slices are allocated and CPUs
are scheduled for execution.

While this representation is in itself general enough to be used in many
types of simulations, e.g., the study of MIMD adaptive computation, avida
is designed explicitly for Artificial Life research. Hence, we term each grid
point a cell or organism, and each associated list of instructions the genome
of that organism. Naturally, active grid points are alive, and inactive (or
empty) grid points are dead. The genome of each CPU is circular, as
in most bacteria and viruses. As a consequence, the instruction pointer
never leaves a cell unless it is forced by explicit command (see parasitism
and the jump-p command in Section A.5).

We define the assembly language to be simple and to support the
capacity for reproduction, where the program from one processor can
copy itself and replace the program of a neighboring processor with
its copy. We then seed the environment with a simple human-coded
self-replicating program which soon spreads throughout the available
lattice.

These active programs have a small probability of each command
being randomly permuted in the copy of their genomes (see Section A.6
for a description of this process); this results in a Darwinian selection
process. By using different time-slice allocation methods (see Section A.3)
we can specify a fitness landscape such that the programs will evolve to
exhibit useful behavior beyond that of simple self-reproduction.

301

302 .

Appendix The avida User's Manual

A.3 Time Slicing and the Fitness
Landscape

This section discusses the theory behind the time slicing schemes used
in avida. Time slicing is the method by which the creatures in the grid are
allocated CPU time to execute their code. Some creatures have faster CPUs
than others, so the time slicing code must make sure they all run at the
appropriate (relative) rates. Each creature has a merit which determines
the speed of its CPU; the time slicer will adjust this merit as creatures
perform tasks deemed desirable in this environment.

Time Slicing

The mechanism by which portions (or slices) of CPU time are distributed
to the individual processors on the grid significantly influences the global
behavior of the population; here we examine it in detail.

The idea behind a system such as avida is to explore the complexity
that the chemistry of self-replication has introduced, without actually
simulating chemical reactions. Rather, the chemistry of the polypeptides
coded for in the DNA is replaced by executing the string of instructions.
As in chemistry, we expect different genomes to have different proper-
ties, most of which are reflected by either a greater or lesser amount of
CPU time triggered by the cell. This is the equivalent of endothermic
or exothermic reactions. Replication and execution of instructions costs
CPU time, thus consuming energy. 7

On the other hand, certain instructions executed in the right order can
trigger large amounts of bonus CPU time, the equivalent of a catalyzed
reaction which benefits replication. As in real chemistry, it is problem-
atic to specify which sequence of instructions is beneficial; rather, we
construct the environment by rewarding effects, such as we did in our ex-
periments with integer computation (discussed below). In the remainder
of this section, we point out how this mechanism can be used to breed
desired traits.

In addition to this external bonus structure, which effectively dis-
tinguishes one environment from another, we specify basic systems of
CPU-time distribution that describe the low-level aspects of the virtual

A.3 Time Slicing and the Fitness Landscape

chemistry we are constructing. This is the time-slicing system proper. To
define the time slicer, we have to decide how much time a cell should

be worth by default, i.e., without studying the effect this string has when -

executed in a population.

A simple choice would be to give each stripg a constant time slice
regardless of its size. This is the primary mechanism used in the tierra
system. With such a choice, all cells attempt to minimize the length of
their code by shedding superfluous instructions. The shorter they are,
the less they have to copy, and the more copies they can make of them-
selves in the fixed amount of time they are given. The gestation time is
roughly linear in the length of the cell. The advantage gained by shrink-
ing the code is so dramatic, however, that cells might even choose to shed
sections of code that trigger moderate bonuses. Such a method certainly
provides for very efficient optimization while discouraging the evolution
of complex code by magnifying the barrier to neighboring local minima
in the fitness landscape. As far as the structure of the fitness landscape
for the strings is concerned, such a slicer increases the local slopes and
thus accelerates convergence to a local energy minimum while reducing
ergodicity.

Another possibility is to distribute CPU time in a manner proportional
to the length of the code. This is the size-neutral scheme also used in tierra.
The resulting fitness landscape is intuitively much smoother; strings that
behave in the same way but differ in length of code are degenerate as far as
their replication rate is concerned and far-lying regions in genotype-space
can be accessed easily. Clearly this mechanism is much more conducive
to the evolution of complexity. However, it has a certain disadvantage
from a practical point of view, as the instruction set provides the pos-
sibility to jump over sections of code. The cells soon discover that they
can earn free CPU time by developing code that is neither executed, nor
properly copied. This does not exist in real chemistry, as even DNA that
is not expressed still participates in chemical interactions.

We therefore developed two mechanisms to handle this. The first
counts only those instructions that were copied into the creature, or al-
ternatively (as defined during the configuration of the run) only those
instructions executed by the creature, in evaluating the effective length.
Under these conditions, lean cells are favored over those that carry sec-
tions of un-executed, un-copied code. The second mechanism forces a
creature to copy at least 70 percent of itself into its daughter, and exe-

303

304

Appendix The avida User’s Manual

cute at least 70 percent of itself, or else all divides will fail. The precise
parameters are, again, configurable in the genesis file.

The slicers discussed here can be distinguished by a simple formula
that describes the mechanism. Specifically, the time doled out (allocated)
to each cell a priori is proportional to the creature’s merit, where merit
is determined by the number of instructions copied into (or executed
by, depending on the configuration) the creature, times any bonuses
given to a creature through its interaction with the environment. This
multiplication (as compared to the method of addition of bonuses used in
previous incarnations of avida and in tierra) serves to ensure that there is
no size bias in evolution. In the case where bonuses are additive, they will
soon overshadow the size component of the merit thus bringing back the
constant time-slice paradigm. Note that enforcing size neutrality is strictly
speaking un-biological, as it is known that self-replicating strings will
shed all unnecessary instructions if given the opportunity. In avida, size
neutrality is necessary in order to jump start the evolution of complexity.

Carving a Landscape

Since the time slicer defines the landscape (and thus the “physics” and
artificial chemistry) associated with self-replication, we can superimpose
any landscape we deem interesting. This is done by specifying bonus
CPU time associated with the phenotype of the string. By rewarding actions
rather than a particular sequence of commands within a genotype, we
introduce the possibility for open-ended evolution. As the set of possible
strings that have the same phenotype is effectively infinite if no bounds
are put on the length of strings, it is impossible to construct a string with
maximum fitness given a complex enough environment. The complexity
ofthe landscape (here identified roughly as proportional to the number of
distinct local minima) increases exponentially with the number of distinct
bonuses specified, as they can in principle be triggered simultaneously
and in any order (often integrated so precisely that the same section
of code will work on multiple tasks at once). As an example, consider
the landscape we constructed in such a way that the adapted population
would reflect a phenotype capable of adding integer numbers.

As a first step, we reward doing any form of input and output. We then
further reward the correct input/output (I1/0) structure (i.e., a minimum

A.3 Time Slicing and the Fitness Landscape

of two get and one put command, in that order). For each such step, we
multiply the creature’s merit by a fixed amount. This is admittedly a de-
viation of the principles just stated, as we reward a genotypical signature
rather than a phenotype. However, since 1/0 is a low-level characteristic
(achieved by executing the single instructions get and put), this deviation
appears to be warranted. Also, any additions to the instruction set which
also allow for manipulation of the input and output buffers should also
trigger their bonuses.

Next, we reward the capability to echo numbers (which were read
from the input) into the output. This reward is phenotypic, as it can be
obtained in a number of distinct ways, all of which are rewarded as long as
they properly complete the task. Finally, if a put command writes into the
output buffer a number which is the sum of two previously read numbers,
the string is rewarded with another bonus. Each of these rewards can be
triggered multiple times each gestation period, typically to a maximum
of three. By default, the bonuses multiply the creature's merit by a fixed
factor the first time they are triggered, while only multiplying them by
a smaller factor (1.25) thereafter. This is both to encourage diversity in
ability, and because it is typically easier to perform a task multiple times
than it was to learn it initially.

How such a bonus structure carves a landscape in the space of all
fitness improvements becomes obvious (or at least intuitive) if we an-
alyze the population shortly after it adapted to the echo bonus. At that
point, mutated strings write all sorts of numbers into the output, num-
bers that are obtained via random manipulations. Among those we find
sums, differences and multiples of the input numbers. The gene for
addition is simply filtered out by rewarding this particular task out of
all those currently being performed. Any other task can be filtered
in the same manner. Quite literally, rewarding addition creates a val-
ley that only those cells with the appropriate gene can occupy. Since
cells in the lower regions of the landscape obtain more offspring than
those higher up, they soon dominate the population and drive strings
missing the gene into extinction. Once this is achieved, the adapted pop-
ulation spreads in diversity via the effects of mutation, to explore new
regions of the landscape where perhaps more crevices can be found.
Such a sequence of adaptations results in a fitness curve resembling
a staircase, which can be a true fractal if the environment is complex
enough.

305

306

Appendix The avida User’s Manual

Fitness

The fitness of a cell in such simple systems is given by the total effective
number of offspring it can generate in its environment. Theoretically,
this is given by the merit M earned by the cell, divided by the time it
takes to generate an offspring, the gestation time t,

a==. (A1)

This fitness measurement is a unitless quantity which can be directly
compared to the fitness of any other creature to determine their relative
reproduction speeds. If one creature has twice the fitness of another then
it will be able to have twice the number of offspring per unit time.

Choosing a Time Slicing Algorithm

These algorithms handle the details of grid execution; they ensure that
cells are executed with simulated parallelism to minimize any advantage
dependent on execution order which may occur.

This system provides a method of time-keeping independent of grid
size; in tierra, the standard time measure is one million instructions, which
depends entirely on the population size. In a large population, several
measurement periods might pass before the population is entirely exe-
cuted even once. In avida as the grid becomes larger, the entire grid is
executed during each measurement period, and as the time slicer allo-
cates more time (more energy) the cells run correspondingly faster in
relation to the measurement periods. In addition, many of the algorithms
provide a natural interface to distribute the avida system across multiple
processors (see below).

In order to properly configure the time-slicing scheme, edit the “Time
Slicing” section of the genesis file (see Section A.9). The first value,
AVE_TIME_SLICE will set the average number of instructions a creature
should execute every update. By default, this value is set to 30.

Next we have SLICING_METHOD; this is an important control which
determines just how the time blocks are doled out. The options are:

o CONSTANT: This means that all of the CPUs get the same amount of CPU
time, and their merit is ignored. This obviously encourages shrink-

A.3 Time Slicing and the Fitness Landscape

ing, and removes all incentive to learn environmental tasks (unless
merit is taken into account in the placement of new offspring; see
BIRTH_.METHOD below.) CPU time is doled out evenly such that each
creature executes a single instruction before any execute their second
one.

e BLOCK: In this time slicing scheme, all CPUs are allocated a block of
CPU time such that the size of each time-slice block is proportional
to the creature’s merit. The CPUs are executed in sequence for their
entire block, quite similar to tierra.

e PROBABILISTIC: Instructions are executed in a semi-random fashion
in this method, such that the probability of a single creature having
an instruction executed is proportional to that creature's merit. Thus,
on the average, each creature does obtain an amount of CPU time
proportional to its merit. This method has the most realistic feel to
it, but the random component does slow learning slightly, and the
constant use of the random number generator makes avida run slightly
slower.

e INTEGRATED: This is the default slicing method in avida. It has each
CPU execute a single instruction at a time in a deterministic fashion
such that the relative speeds of the individual CPUs are proportional
to the merit of the creature using them. Effectively this comes as close
to a perfectly synchronous parallel execution as possible.

The next variable that can be configured for time-slicing is the
SIZE MERIT_METHOD. This determines what the base value of the crea-
ture's merit is proportional to: its full size, its executed size, its copied
size, the smallest of the latter two, or just a constant value (independent
of size). In avida, the default method is to select the minimum of executed
and copied size to determine base merit. The relative value of the dif-
ferent methods is briefly discussed above. These different choices allow
for a varying amount of junk (i.e., unexecuted or even uncopied) code to
develop in the creature's genome.

Finally, we have TASK_MERIT _METHOD, which simply determines if tasks
should be used in determining merit. This is a binary switch, turned on
by default.

307

308

Appendix The avida User’s Manual

A.4 Reproduction

The process of replication dominates the dynamics of the system. Here,
we present an overview of the method by which programs reproduce,
and we then discuss the exact implementation.

Self-Replication and Offspring

Reproduction in avida is typically carried out in four distinct processes:

Allocation of new memory.

Copying of the parent program into the new memory, instruction by
instruction.

Division of the program into parent and child programs.
e Placement of the child program into the lattice.

The first three processes are implemented in the instruction set (and
are thus the responsibility of the individual program), while the fourth
process is automatically handled by the environment when a successful
division takes place.

In a correctly self-replicating program (see the example program in
Section A.5), the size of the allocated memory is typically exactly the
program’s size (doubling the total memory from its original size), with
division occurring at its midpoint after the copying process is finished.
In principle, there is no reason that a program could not use a different
method (such as tripling its size, and making two copies of itself, or
creating a self-extracting smaller program); however, the instruction set
(and the handwritten ancestor) are biased towards the first method.

The reproduction system is separated into two conceptual parts: first,
the generation of offspring, which is handled by individual cells; and
second, the placement of offspring, which is handled by the interaction
lattice or the world structure.

Placement of the offspring is done in a localized manner; the offspring
of a program can only be placed within the immediate neighborhood of
that program'’s location (the near eight grid positions on a 2-D lattice).
First, an empty location is sought; if no free location exists, the oldest cell
(in the default scheme) is chosen and replaced with the offspring. The

A.4 Reproduction

search for the oldest cell includes the parent program; thus, a creature
can actually cause itself to be killed by the placement of its child.

The process of placement is entirely a function of the environment;
as soon as a successful division occurs, the new program is automatically
placed. It is intrinsically part of the “physics” of the system, while the
replication process itself (the allocation, copying, and division) is part of
the instruction set.

Choosing a Placement Method

In order to choose a method of placing a daughter cell, edit the “Repro-
duction” section of the genesis file (see Section A.9). The BIRTH METHOD
variable determines how new offspring are placed, and this can have a
large effect on the soup. If there are any empty cells available, they will
always have top priority as possible locations. If none of the eight imme-
diate cells connected to the mother are vacant, one of the surrounding
creatures (or the mother herself) must be removed to make room for this
new child. The options are:

e Choose Randomly: a creature is chosen at random from the mother
and its eight neighbors. This method is poor for evolution because
approximately half of the creatures will be replaced before they have
had any chance to have offspring, and hence will never have a chance
to prove themselves.

e Choose Eldest: this is the default method in avida. The creatures in
the neighborhood around the mother (including the mother itself)
will be evaluated, and the oldest of them will be removed. In the case
of a tie, the cell to be removed for the new creature will be chosen
randomly from the eldest ones.

e Choose max Age/Merit (highest [age divided by merit]): this place-
ment method favors creatures with a higher merit, and is an additional
way to encourage creatures to learn specific tasks. With this birth
method combined with the constant time-slicing scheme, the crea-
tures will be given CPU time equivalent to other (time-slicing based)
learning schemes. The difference here is that rather than having faster
CPUs, the creatures will simply live for a longer period of time. See
Section A.3 for more information on this.

309

310

Appendix The avida User’s Manual

e Choose Empty: this is a very limited birth method which currently
is useful only when death is turned on (see below). In this mode cells
are prevented from killing each other, and only new born creatures
are allowed to move into empty cells.

Choosing a DEATH_METHOD for the soup is somewhat less complicated.
In this version of avida, there are three methods available. The first is to
simply turn death off such that creatures can only die from being replaced
by a newborn, and not through old age. The second way is to fix the max-
imum number of instructions that any creature can execute, effectively
giving them a finite lifetime akin to decay. Creatures that hit this age limit
are replaced by empty space. This age limit is specified by the AGE_LIMIT
variable. Finally, the last method is to have the maximum number of in-
structions a creature can execute be a multiple of that creature's length.
If you select this method, the maximum number of instructions that a
creature can live is its length multiplied by AGE_LIMIT.

A.5 The Virtual Computer

The virtual computer implemented in avida consists of a central pro-
cessing unit (CPU) and an instruction set. These components define the
low-level behavior of each program; the CPU and the instruction set
together form the hardware of a Turing machine.

When a genome is loaded into the memory (as the software) of a CPU,
the initial state of the Turing machine is set. The hardware, combined
with the interaction with other CPUs, then governs the set of transitions
between CPU states.

The CPU Structure

The CPU contains the following set of variables, as shown in Fig. 1.1:

e A memory which contains the assembly source code to be run. Each
location in memory contains a single instruction, and a set of flags
to denote if the instruction has ever been executed, copied, mutated,

A.5 The Virtual Computer

etc. Additionally the memory has an instruction pointer (IP) which
indicates the next position to be executed.

Three registers that are used by the program. These are often operated
upon by the various instructions, and can contain arbitrary 32-bit
values. *

Two stacks that are used for storage. These are of variable (though
finite) size. The default size of the stack is 10.

An input buffer and an output buffer which the creatures use to receive
information, and return the processed results. Each buffer also has a
pointer to indicate the active position within it.

A facing which determines which of the CPU’s neighbors it is currently
pointing towards.

scarch-f
nop0 Memory
nopd

itk 1/0 Buffers

add

= = TT1T]

= or| | |]]

o (¢ -

cory CPU % 2 Stacks
=

,-m., i

= 1

ol i

el 3 Registers A

e =

nopl r——=F-1

.......

FIGURE A.1 Structure of the virtual CPU in avida.

311

312

Appendix The avida User’s Manual

The Instruction Set Implementation

The instruction set in avida is loaded on startup from a configuration file
(inst_set.24.base by default). This allows selection of different instruc-
tion sets without recompilation, as well as allowing different numbers of
instructions to be specified. However, it is not possible to alter the behav-
ior of individual instructions or add new instructions without recompiling
avida; this has to be done directly in the source code.

All of the available instructions are listed in the inst_set.* files with
a 1 or a 0 next to an instruction to indicate if it should or should not
be included. Changing the instruction set to be used simply involves
adjusting these flags.

The instructions were created with three things in mind:

e To be as complete as possible (both in a Turing complete sense, and,
more practically, to ensure that simple operations only require a few
instructions).

e For each instruction to be as robust and versatile as possible; all in-
structions should take an appropriate action in any situation where
they are executed.

e To have as little redundancy as possible between instructions. (Those
instructions which are redundant will typically not be turned on
simultaneously for a run.)

One major concept which differentiates this assembly language from
its real-world counterparts is in the additional uses of nops (no-operation
commands). These have no effect on the CPU when executed, but may
modify the behavior of any instruction which precedes them. This occurs
in two ways; most of the time it will change the register affected by a
command. For example, an inc command followed by the instruction
nop-A would cause the contents of the AX register to be incremented,
while an inc command followed by a nop-B would increment BX.

Below, whenever a register name is surrounded by ?'s in an instruction
description, it is the default register to be used. If a nop follows the
command, the register it represents will replace this default.

The second way nops can be used is as labels (reference points) for a
search or a jump as in tierra. If nop-A follows a jump-forward command,

A.5 The Virtual Computer

it scans forward for the first complementary label (nop-B) and moves the

instruction pointer there. Labels may be composed of more than a single

nop instruction.

The label system used in avida allows for an arbitrary number of differ-
ent nops. By default, we have three nop instructions, nop-A’s complement
is nop-B, nop-B's is nop-C, and nop-C’s is nop-A.

A description of all of the instructions implemented in avida follows
below. Those with a “*” next to them are part of the default instruction
set.

No-operations

There are three nops in the default instruction set, and a fourth which is
a “pure” no-operation, as follows:

*

g B
O O
b
Q

nop-A

» p_B

*

: A pure no-operation instruction. It will do nothing in all
cases.

Flow control operations

if-not-0|: If the 7BX7 register is not 0, execute the next instruction,
otherwise skip it.

* |if-n-equ| : If the ?BX? register does not equal its complement,
execute the next instruction, otherwise skip it. (Thus a nop-A fol-
lowing this command causes AX and BX to be compared; nop-B—the
default—compares BX and CX, and finally, a nop-C compares CX and
AX)

if-bit-1{: Execute the next instruction if the last bit of ?BX? is one.

* | jump-b | and | jump-£ | : If a label follows, search for its complement
in the backwards/forwards direction; if a match is found, jump to it.

313

314

Appendix The avida User’s Manual

If there is no label, jump by BX instructions in the proper direction. If
there is a label, but its complement is not found, the jump will fail.

: Jump specifically into the memory of another CPU, decided
by the current facing. Jump to the position in the faced creature at
an instruction after the first occurrence of the complement label. If
no complement label can be found, this instruction fails. If no label is
initially provided to the instruction, the IP (instruction pointer) will
move to line BX in the faced CPU's memory. A creature's IP may only
move to an immediate neighbor and no further (local interactions
only).

: Put the location of the next instruction on the stack, and jump
forward to the complement of the label which follows. If there is no
label, jump BX instructions.

: Pop the top value from the stack and jump to that index in
the creature’s memory.

Single argument math operations

All of these affect the 7BX? register.

* |shift-r|and [shift-1]: Rotate the bits of the ?BX? register in the

appropriate direction.

: Set the last bit of 7BX? to 1.

* and : Increment or decrement ?BX?.

: Set ?BX? to zero.

* | push | and [pop]: Push ?BX? onto the stack or pop the stack into ?BX?.

: Set BX to the ternary equivalent of the label which follows.
To do this, take nop-A as a 0, nop-B as a 1 and nop-C as a 2. Thus nop-C

A.5 The Virtual Computer

nop-A nop-B would translate to 2 0 1 in ternary, or 19 in decimal. If
there is no label, set it to 0.

Double argument math operations

* : Set ?BX? equal to the sum of the BX and the CX registers : ?BX?
= BX+ CX.

* [sub]: 7BX? = BX - CX.

* [nand]: ?BX?= BX NAND CX (in bitwise fashion).
: 7BX? = BX NOR CX (bitwise).

: Place BX and CX in the proper order, i.e., such that CX > BX.

“Biological” operations

* : Allocate ?BX? instructions of memory at the end of the
memory for this CPU and return the start location of this memory
into AX. Only one allocate may occur between successful divides; any
additional ones will automatically fail. Additionally, not more than
twice or less than half of the current memory size can successfully be
allocated.

* : Split the memory in this CPU at 7AX?, placing the instruc-
tions beyond the dividing point into a new cell. There are a number
of conditions under which a divide will fail. Those are:

(a) If either the mother or the daughter would have less than 10
instructions.

(b) If the creature has not completed a successful allocation of
memory.

(c) Ifless than 70 percent of the mother was executed.
(d) Ifless than 70 percent of the daughter's memory was copied into.

(e) If the daughter would be less than half or more than double the
mother’s size.

315

316

Appendix The avida User's Manual

* : Copy a command from the memory location pointed to by the

BX register to the memory location pointed to by AX + BX, i.e., copy
the instruction at location BX into a location offset by AX. If a location
is out of range of the memory, then it will be cycled back into range.

: Copy a command from memory at BX into the CX register.

: Copy a command from the CX register into the memory
location at AX + BX.

: Only execute the next line if the contents of memory lo-
cations BX and AX + BX are identical; otherwise skip it. This command
has an error rate equal to the copy mutation rate. (It can be used to
do some level of error checking.)

I/0 and sensory operations

. : Read the next value from the input buffer into 7CX?.

. : Place ?BX? into the output buffer and set the register used to 0.

* |search-f | and [search-b|: Search in the appropriate direction for

the complement label and return its distance. The returned value is
placed in the BX register, and the size of the label that followed is put
in CX. If a complement label is not found, a distance of 0 is returned.

Additional instructions

| switch_stack|: Toggles the active stack.

[rotate-1]and [rotate-r]: Rotate the current facing of the CPU in
the appropriate direction.

: This instruction acts somewhat similarly to divide, but
rather than killing another creature and replacing it with its offspring,
the code is instead injected into the middle of a running CPU’s mem-
ory. The CPU which the code is to be injected into is chosen by the

A.5 The Virtual Computer

facing of the active CPU and the position is found by using comple-
ment labels. If a complement label can not be found in the memory
of the CPU faced, the instruction fails.

: This command allows a CPU to set its own copy mutation
rate. When a command is executed, it simply takes the value in ?BX?
and uses that for its new copy mutation rate (x10~*). The minimal
value which can be set is, of course, 1.

: This instruction modifies the copy mutation rate of a
CPU. When executed, the copy mutation rate of the CPU has ?BX?

x107% added to it. The minimal value it can be modified by is 0.0001.

An Example Program

What follows is one of the simpler ancestor organisms distributed with
avida; it is contained in the file creature.small in the work/genebank/
directory. It is a simple self-replicator, and very short compared to other
ancestors included in this distribution. Due to its efficiency in self-
replication, this creature is not well suited as an ancestor for adaptation
experiments. Note that when an instruction pointer runs off of the end
of the program, it will automatically loop back to its beginning, in order
to ensure that the chemistry of the program never halts.

This simple program contains two label pairs (o and B), one for the
purpose of calculating the length, and the other for the implementation
of a copy loop. The search-f followed by label & searches forward in
the genome for its complement, and returns its distance (from the end
of the first label to the end of the second) into the BX register, and the
size of the label into CX. The program then adds CX to the BX register,
to account for the length of the label itself, and finally increments BX to
account for the single instruction before the first label. The creature now
has its own size in BX. When the instruction on line five (allocate) is
called, the program is doubled in length and the absolute address of the
new chunk of memory is put in AX. Now, AX contains the offset of the
newly allocated section, and BX contains the length of the cell (which,
if a creature is copying itself properly, will always be the same). Lines
6 through 11 move the size of the creature (via the stack) into the CX
register, and clear out BX.

317

318 Appendix The avida User’'s Manual

00 search-f find distance to the end label
01 nop-A label o

02 nop-A .

03 add account for the end label's size

04 inc account for the initial search-f
05 allocate allocate space for daughter.

06 push move size from BX onto the stack.
07 nop-B

08 pop move size off of the stack into CX
09 nop-C

10 pop since the stack is empty, pop 0 into BX
11 nop-B label B (Copy Loop start)

12 nop-C

13 copy copy the current line...

14 inc move onto the next line.

15 ifn-equ if we aren’t done copying...

16 jumpb ..jump back to the loop’s beginning.
17 nop-A label g8

18 nop-B

19 divide done copying; separate the daughter!
20 nop-B label @

21 nop-B

The copy loop follows. It starts by copying from line BX and uses BX +
AX as the destination. Initially, BX is 0 and AX is the size (22). This means
the first time through the copy loop, line 0 is copied to line 22 (the first
line in the newly allocated memory). Then line 14 is executed and BX is
incremented. Finally, the if-n-equ tests to see if whether BX and CX are
different, and jumps back to the beginning of the loop if this is the case.
The loop will continue (copying a new line each time) until BX equals CX
and hence all the lines have been copied. Finally, the divide instruction
is reached.

The divide instruction divides the cell at the offset specified in the
AX register, creating a parent and daughter cell. The daughter is placed
in a neighboring cell (the exact mechanism of which is described in
Section A.4). At the end of the program, the instruction pointer is looped
back to the beginning.

A.5 The Virtual Computer

Here is a trace of the execution of the program, with the values of the
registers and stack at each moment in time.

line
00
03
04
05
06
08
10
12
13
14
15
16
13
14
15
16
13

13
14
15
17
18
19
20
21

instruction AX BX CX

search-f
add

inc
allocate
push
pop
pop
nop-C
copy
inc
if-n-equ
jump-b
copy
inc
if-n-equ
jump-b
copy
copy
inc
ifn-equ
nop-A
nop-B
divide
nop-B
nop-B

0

0

0
22
22
22
22
22
22
22
22
22
22
22
22
22
22

22
22
22
22
22
22
22
22

19
21
22
22
22

N
N

MDD == -EO OO

21
22
22
22
22
22
22
22

22
22
22
22
22
22
22
22

stack gcomments

22

We have size!
Allocate space
push BX

pop CX

pop BX
No-Operation
Copy line 0...

... to start of loop
Copy line 1...

...to start of loop
Copy line 2...

Copy line 21..

Divided!

For this program, the gestation time (the number of instructions re-
quired to reproduce) varies between 98 and 100 instructions. The first
time through requires 98 instructions: the portion before the copy loop
consists of 8 executed instructions; the copy loop contains another 4 in-
structions that are each executed 22 times each, except for the last time
the copy loop is executed, where the last jump-b is skipped over; and
from there it is another 3 instructions until the divide is issued. So,
8 + (4 x 22 — 1) + 3 = 98. However, the second time through, an addi-

319

320

Appendix The avida Uscr’s Manual

tional 2 instructions are executed because of the « label after the divide
instruction, and a gestation time of 100, rather than 98, is averaged into
the genotype record.)

A.6 Mutations

Avida has a range of both explicit and implicit mutations. Five forms of
explicit mutations have been implemented in avida.

There are three intuitive ways in which mutations can be triggered in
avida. The first is the most basic cosmic-ray or point mutation, which is
an external random process independent of the action of the cell—it will
hit randomly chosen points in the soup at Poisson-randomly distributed
times. Next we have copy mutations, which can occur whenever a creature
tries to copy a line. There is a small probability (fixed by the user) that
this copy will be flawed. Finally we have divide mutations which occur at
the time of birth of the child, and which modifies the parent’s genome in
a predetermined way, such as inserting or deleting a random instruction
from a random location.

The primary type of these explicit mutations are copy mutations.
They are used most commonly in avida runs as they also are the most
prevalent in natural biological systems. Overall, the types of mutations
implemented in avida are

e Copy mutations
e Point mutations
¢ Divide mutations
e Divide insertions
Divide deletions

Naturally, the rates for all these mutations must be below a certain
threshold in order to avoid killing the population, while a rate that is too
low slows cevolution to a craw] (see Chapter 11 of the book for a study of
learning vs. mutation rate.)

It is also important to note that each of the different forms of mutations
have different rates that are expressed in different units. Copy mutations
are per-site, point mutations are per-site per-update, and divide mutations

A.6 Mutations

are per-creature. What this means is that for the former two, longer crea-
tures stand a better chance of being mutated so they put a pressure on the
soup for creature size to shrink. On the other hand, with divide mutations
longer creatures can often better survive a single mutation, and hence
put a slight pressure for sequence growth on the population.

Implicit mutations in avida typically involve mistakes (due to incom-
plete or faulty algorithms) committed in the act of self-copying, usually
instigated by code corrupted by mutations. There are a wide assortment
of these, many of which have not been categorized due to the ability of
creatures to always find new and surprising methods of operation.

One of the most common forms of implicit mutations is the dupli-
cation of code within a creature; sometimes the flow of execution will
be distorted such that a section of code will be replicated multiple times
within a single daughter. A second (similar) form occurs when a creature
only partially copies itself over a dead creature which previously occu-
pied the CPU. The two creatures (old and new) have effectively merged
into a single one—a process which has been dubbed necrophilia. Other
implicit mechanisms are certainly possible. As a result, the effective copy-
fidelity of a program can be significantly lower than the one calculated
with mutation rates only.

Setting Mutation Rates

Mutation rates can be configured in the genesis file in the “Mutations”
section. There are five settings; all of these are scaled independently,
depending on the type of mutation, and are explained in more detail
below.

e POINT_MUT_RATE: This value is the probability of mutation per-site per-
update, in units of 107, Typically, a population can survive values up
to approximately 500, assuming that no other mutations are turned
on.

e COPY_MUT RATE: The probability of a copy instruction writing the in-
correct instruction. These are the most common mutations used in
avida since they best model simple biological systems. The values are
specified in units of 10~*. Depending on the length of the genomes,

321

322

Appendix The avida User’s Manual

soups can sometimes survive values up to 350 or so. Typically, 30 is
considered a low mutation rate, while 200 is high.

e DIVIDE MUT_RATE: The probability of mutation every time a divide
occurs. This causes a single instruction, chosen randomly from the
code, to mutate. All divide-based mutations are specified in units of
1072, Thus a soup can handle divide mutation rates as high as 85 (i.e.,
one instruction is mutated 85 percent of the time its host divides).

e DIVIDE_INS_RATE and DIVIDE DEL RATE: The probability to inject or
remove a random instruction to (or from) a random location is trig-
gered in a similar way to DIVIDE_MUT _RATE (and also specified in unts
of 1072). A typical population appears to tolerate up to about a value
of 85.

By default, COPY_MUT_RATE is set to a value of 50 (which translates to a
probability of 0.005 per copy, and insert and delete mutations are turned
on to 5 percent, i.e., DIVIDE_INS_RATE and DIVIDE DEL _RATE are set to 5.
The insert and delete mutations facilitate size changes in the population,
which is helpful in the development of complexity.

Additionally, there are two other places where experimentation with
mutations is possible. The first is in the instruction set; instructions are
available which allow programs to alter their own copy mutation rate.
These are set-cmut and mod-cmut. (See Section A.5 for more information
on initializing and using these instructions.)

The other place where mutation rate can be controlled is the event-
list file. There is a single event called set_copy mut which resets the
copy mutation rate of all the CPUs during a run. See Section A.9 or the
event_file itself for more information on this.

A.7 Installing avida

Version 1.0 of avida is working under Microsoft Windows 95, NT, and most
Unix platforms (specifically tested under HPUX, linux, OSF1, SunOS, So-
laris, IRIX, and IBM AIX). Separate versions of the program are included
for both Win95/NT and Unix (with text-based user-interfaces). All of the
needed files are on the CD-ROM which comes with this book, or at the
TELOS web page at http://www.telospub.com/PHYSICS/Alife.html,
where the most up-to-date version of both avida and this manual can
be found. New versions of the software, as well as updated versions

A.8 The Text Interface

of the manual, will also be placed on the avida ftp site at ftp://
ftp.krl.caltech.edu/pub/avida/.

Windows 95 and NT

The Windows version of avida is the easiest to work with. Retrieve the file
Avidal_0.EXE and execute it. This is a self-extracting file that will create
a directory called Avida with two subdirectories: The avida subdirectory
contains all of the source code for the program, and the work subdirectory
is where all of the configuration files are located, and where avida should
be run. Upon unpacking, there will be a precompiled avida executable
in the work subdirectory, which can be run immediately.

UNIX Systems

The file avida-1.0.0.tgz on the CD-ROM and the fip site contains the
source code for avida. Compiling avida from this source code should be
straightforward on most systems.

The command “gunzip <filename>” will uncompress the file, then
“tar -xvf <filename>" will extract the actual avida files. If this does not
work, consult your systems administrator for the specifics of your system.
Note that on the CD-ROM, there is in addition a shell script unix-avida
which unpacks avida upon executing it.

Extracting the program creates an avida-1.0.0 directory with the
source and work sub-directories. In order to produce an executable file,
avida has to be compiled by going into the work directory and executing
“configure” and then “make”. This should create the executable avida in
the sub-directory work, where all the configuration files, such as gene-
sis, etc., are also located. Here, it is sufficient to type avida to run the
program.

If this build should fail, the actual Makefile may be edited directly to
select compiler, user-interface, and include directories.

A.8 The Text Interface

For the most part, the text interface to avida is simple and straightforward
to use; most of the options available are listed on the screen. For example,

323

324

Appendix The avida User’s Manual

at all times there is a menu-bar at the top of the screen which lists the
current update, and the keys to press to go to any of the most used
avida screens. This section further defines the function of each of these
options.)

The Map Screen

The Map screen displays the spatial representation of the population of
organisms in avida. The grid itself is toroidal and typically will not fit
entirely on the screen. The arrow keys will allow the users to adjust the
portion of the map viewed. On computers using a “curses” interface, the
arrow keys will often not function properly, in which case the number
keys 8, 2, 4, and 6 can be used to move up, down, left, and right respec-
tively. Here is an example map screen (showing genotype mode on a
noncolor terminal):

————

| Update: 97 | [Mlap [Sltats [Olptions ([ZJoom [QJuit | Avida

|
AAAA.TAAAAK . . KKAA+KKK
AAAAAIIAA.AKK. . +KAKKK.KAAA
A.AAAAAAA . AAKAA+KKAAAKKAAAR
AAAAAAAT . . AKA. . AKKKKAKKKAA
AA.A.AATAAAAA. AAKKKKA . A,
AAAAAAAAAAA AAAAAA KA. A.
AA.AAAAAAAAA . AKKA.AA. A . KAA
AAAAAA AAAAAAA.AA. . KAAAA+
AAAAA . AAAA . A . AFAAAAAAAFAAAS
A AA.A.AAAAA . AFAAAA. . AFAAAS~
AAAA+AAAAAAAAFAAAAAFFFFAAA
AAA. AAA . AAAAFA . +AAAA+FFF . .
AAA . .AAAAAAAANA . A . .+FAFAFFFFF
A.AAAA . AAAAAAAAAFAFFF .+ .A. .
.AAAAAA . AA . AAAAF. . FFFF.F.A
AA+A . AA HHHAAA . FA . FFFFFAA
AAAAAA+AAAH A.AFF . .FFAF+
AAAA . AAAAAAAAAAA . AAAFFFA
AAA AAAAA . AAAA . AAAAFFF

A AAAAAAAA. .AA. BGGAG.
» Clipping last 40 line(s) * [<] Genotype View [>]

A.8 The Text Interface

Many different features can be displayed by the different map modes

(which can be cycled through using the ‘<’ and ‘>’ keys). The available
map viewing styles are: :

Genotype mode: This view of of the soup will display the genotype
at each location. The most abundant genofypes each have a unique
color (or letter if colors are not available) assigned to them; all sites
which are of the same color (or letter) harbor the same genotype. Crea-
tures which have passed the genotype threshold, but are not abundant
enough to have a color of their own, are represented by white
(or a +) on the map. Sub-threshold genotypes are denoted by gray
(ora.).

Species mode: This viewing method is only available when speci-
ation has been turned on. It works in a manner very similar to the
genotype mode, except single colors (or letters) are assigned to en-
tire species. Additional species (those which are less abundant) are
denoted by the color white (or marked by a +). Species mode tends
to be much cleaner than genotype mode for observing the current
dynamics taking place.

Age mode: The age of each creature is displayed using a similar
scheme where a 0-9 represents the exact age (in updates) if possible;
otherwise a range of Roman numerals are used to approximate the
actual age (X = 10-20, L = 21-80, C = 81-200, + = 201 or greater. . .)
Breed True mode: This mode simply displays a binary gray or white
(- or * if no colors) indicating whether a program at that grid point is
an exact copy of its mother. White (or a *) stands for a true-breeding
program.

Parasite mode: This mode works identically to Breed True, with white
(or *) indicating creatures which are parasites.

PointMut mode: Again, this mode works like Breed True, where
white (or *) marks those creatures that have been hit by point
mutations.

325

326

Appendix The avida User's Manual

The Stats Screen

This screen displays all of the current statistics about the ongoing run. A
typical snapshot of the screen looks like this:

Jf ——

+ — +

| Update: 97 [Mlap [Sltats [O)ptions [Z)oom [Qluit | Avida |
+- - -- + - +
Tot Births.: 2 -- Dominant Genotype -- Dominant Average
Breed True.: 475 Name........ : 031-aaaaa Fitness..: 0.2213 0.1893
Parasites..: O ID..........: 1 Merit....: 31 31
Energy..... : 0.16 Species ID..: 0 Gestation: 140 140.3
Max Fitpess: 0.3115 Age.........: 97 Size.....: 31 30.8
Max Merit..: 3.8e+01 Copy Size: 31 30.8
Exec Size: 25 24.9
Current Total Ave Age Entropy Abundance: 415 5.85
Creatures: 655 2.1e+03 4.5 6.48 Births...: 0 0.018
Genotypes: 112 3.2e+02 71.3 0.68 BirthRate: 0.214 0.183
Threshold: 15 1.6e+01 83.8
Species..: 9 9.0e+00 89.0 0.41
| Input.. 19 Not.....: 0 Nor.....: 0 |
| Output 1 And.....: 0 Xor.....: 0 |
| 1/0.....: 0 “A Or B 0 Equals 0 I
| Echo....: 0 “A And B 0 |
| Nand....: 0 Or......: 0 |
+ -=+

Starting at the upper left column of the screen, the first block of statis-
tics describes the current state of the soup. These statistics are defined as
follows:

e Tot Births indicates the number of creatures which have been bom
during the past update.

e Breed True is the total number of creatures currently in the soup
which are exact copies of their parents.

e Parasites is the total number of creatures which have displayed par-
asitic behavior, i.e., the number which have executed instructions
outside of their own memory.

A.8 The Text Interface

e Energy is the log of the ratio between the fitness of the dominant
genotype and the average fitness in the soup. (See Glossary.)

e Max Fitness is the highest fitness that can be found in the soup.
During equilibrium this will usually be approximately the same as
the fitness of the dominant genotype.

e Max Merit is the highest merit that can be found in the soup. Since
this gives no indication as to the replication abilities of this creature,
it is typically not a very revealing quantity.

To the right of the soup status column, we have some information
about the dominant genotype. This section simply lists the name of this
genotype, its ID, its species ID, and its age (how many updates it has
existed for). The first three of these statistics are purely for identification
purposes.

On the right side of the screen, more statistics are given for a number
of common measurements on the dominant genotype, as well as the
average across all genotypes. All of these statistics are described in the
Glossary.

In the middle left side of the screen, we have information about the
various taxonomic levels in avida; we give the current abundance of each
in the Current column, the total number of each that have existed over
the entire run in the Total column, the average number of updates each
have existed in the Ave Age column, and finally the entropy of each in
the Entropy column.

Finally, along the bottom of this screen, we list the total number of
creatures which have completed each of the assortment of tasks available
in avida. These numbers reflect only those creatures which have actually
finished the task, so even if every creature in the soup is capable of
completing a task, not all of them may be listed because the newborns
would not have finished it for the first time.

327

328

Appendix The avida User’s Manual

The Histogram Screen

This screen is a histogram of the most abundant genotypes in the
population. A typical screen looks like this:

| Update: 97 | (Mlap ([Sltats [Olptions [Zloom ({Qluit | Avida |
Fitness Name Histogram: [<] Genotype Abundance [>]

0.2213 031-aaaaa: AA 415
0.2204 031-aaaad: A 4
0.1845 031-aaaah: A 5
0.2727 029-aaaac: H 3
0.2251 031-aaaaf: A 5
0.2227 031-aaaab: AAAAAA 47
0.2236 031-aaaac: C 4
0.2214 031-aaaag: A 4
0.2192 029-aaaaa: D 5
0.2190 030-aaaaa: BBBBBB 44

The first number here represents the fitness of the creature; this is
the relative replication rate as compared to the other creatures in the
population.

Next comes the name of the genotype (for example 109-aaaad). This
is an identifier for the genotype, and the name of the file it will be saved
under if it is extracted. The number portion (before the dash) of the
name is the length of the code for that genotype, and the letter sequence
after the dash gives a unique identifier for it. These are never repeated
throughout a single run.

The repeated letter after the name is the actual histogram; the number
of letters which appear here is the relative current abundance of the
genotype. This allows quick recognition of which genotypes are dominant
in the soup. The letter itself represents the species of this genotype, so
any two lines with the same letter are of the same species.

Finally, each line ends with a number which is the exact abundance
of creatures currently within this genotype.

A.8 The Text Interface 329

The Options Screen

This screen lists all of the options which are both currently available, and
were used to initialize this run. A typical screen looks like this:

+ — +
+ — +
+ — +

Update: 97 [(Mlap (Sltats [Olptions [Z]Joom [QJuit | Avida
Current CPU..: (0, 0) Time Slicing.: Comstant
Genotype..... : 031-aaaaa Task Merit...: Expomential
ID#.........: 0 Size Merit...: Full Size

Birth Method.: Replace max age
Max Updates..: 50000 Ave TimeSlice: 30
World Size...: 60x60
Random Seed..: 1 Point Mut: O
Threshold....: 3 Copy Mut: 50

Divide Mut: 0 Ins: O Del: O
Debug Level..: OFF

[R]edraw Screen

Inst Set.....: inst_set.24.base

Task Set.....: task_set

Events File..: event_list

| [Hlistogram Screen [Clhoose New CPU Un- [P] ause

| [B]lank Screen [Elxtract Creature [N]ext Update
|

+ - — — %

The upper left corner of this screen gives information about the active
genotype in the soup, and the remainder of the upper portions of the
screen list values from the genesis file, and what they were initialized
to.

The lower part of the screen (within a box) shows the special options
available to the user. They are:

e [H]istogram Screen: This will go to the histogram screen described
above.

e [B]lank Screen: This option will clear the screen making avida run
marginally faster (since it will not be wasting much CPU time on the
display)

330

Appendix The avida User’s Manual

¢ [R]edraw Screen: If the screen gets garbled, this will erase it and

refresh all text which is supposed to appear.

[C]hoose New CPU: This option will put avida in map mode with the
cursor on the screen. Position the cursor over the CPU you would like
to select, and press <enter>. Additionally, in the Windows version of
avida, the mouse can be used to select CPUs while in this mode. A
single click highlights the CPU targeted, and a double click selects it
as the new active CPU, and exits from this mode. The selected CPUs
inner workings and genome can then be viewed in the Zoom screen
(see below).

[E]xtract Creature: This will save the genotype of the active crea-
ture (the one currently selected) to a file by the same name as the
genotype. An extracted creature will include all of its statistics as
comments (gestation time, fitness, tasks completed, etc.) and can be
loaded into another soup without modifying the file.

[P]ause: This freezes activity in the soup, but still allows navigation
through the interface and examination of the soup. Additionally, many
modes have additional options when the soup is paused. To Un[P]ause,
press P again.

[N]ext Update: When paused, this will advance the soup a single
update.

A.8 The Text Interface 331

The Zoom Screen

This screen contains all of the information about the state of the active
CPU. Here is a typical screenshot:

+
— +

| Update: 97 | [Mlap [Sltats [Olptions [Z]loom [QJuit | Avida
+ + 4 -—
Current CPU.: (0, 0) +- + + -+
Genotype....: 031-aaaaa | Memory: 62 | Stack A I AAAAAAA |
Species.....: spec-0 + + + AA.A.AF |
| 16: nop-A | Ol AAA.AFA |
Gestation...: 140 | 17: nop-B | 0l AAA[AJAAF |
CurrentMerit: 31 | 18: copy | Ol .AAAAFA |
LastMerit...: k} | | 19: inc | Ol AAAAAA.)
Fitness.....: 0.2214 | 20: if-n-equ | Ol AAAAARAA |
Offspring...: 0 | 21 jump-b | 0 |[<] Gemotypes [>]|
Errors......: 0 | 22: nop—C | 0+ -- +
Age.........: 3 | 23: nop-A | 0| AX: 31 |
Executed....: 69 I 24: nop-C | 0 | BX: 15 |
Last Divide. 69 | 25: nop-A | 0| CXx: 311
Flags.......: A + + + +
Facing......: (59, 58) | Inputs | Get.: 0 Not.: O Nor.: 0 |
ettt + Put.: O And.: 0 Xor.: O |
Un- [P]ause | 343139087 | GGP.: O “0Or.: O Equ.: O |
[N]ext Update | 314146099 | Echo: O ~And: O |
[Space] Next Instruction | 81633365 | Nand: O Or..: O |
(-] and (+] Scroll Memory + + +

The column on the left of the screen gives all of the current statistics
for this CPU, and the right of the screen contains information about the
actual hardware in the CPU; the memory, the stack, the registers, and the
1/0 buffers.

The execution statistics recorded here are:

e Gestation: This is the gestation time for the creature (the number of
instructions it needs to execute in order to copy itself.) If the creature
has not copied itself, a zero appears here.

e CurrentMerit: This is the merit which the creature is currently build-
ing during this gestation cycle. Every time a new task is completed,
this value will increase appropriately. When a divide occurs, the cur-

332

Appendix The avida User's Manual

rent merit will be reset to its base value (typically the creature size),
and the value it was at before the divide will be used to determine
how much CPU time it should get.

LastMerit: This is the merit which determines how much CPU time
this creature gets. It is locked it when a creature divides (transferred
from the current merit). When a creature is first born, it is initialized
to the merit of its parent.

Fitness: As described elsewhere, fitness is the relative replication
rate of this creature.

0ffspring: The number of offspring this creature has produced.

Errors: Every time the creature tries to execute an instruction and
fails (e.g., tries to allocate negative space) this value is incremented.
This has no feedback into the soup; it is only for the reference of the
user.

Age: The number of updates that this creature has lived.

Executed: The number of instructions this creature has executed since
it was born.

Last Divide: The number of instructions this creature has executed
since its last divide.

Flags: There are a number of flags within a CPU which can be set; a
corresponding letter will appear in this field when this is the case. The
flags are - A: Allocated (the creature has allocated memory for itself
which it has not yet divided off); I: Injected (the creature was injected
into the soup by the user); M: Mutated (an instruction has been struck
by a point mutation); P: Parasite (the creature has executed code from
within another’s memory); T: True Copy (the creature is an exact copy
of its parent).

Facing or Executing: This attribute gives the direction in which the
creature is pointed. Facing indicates that instructions which involve
other creatures will use this creature, while Executing means that the
code in the specified creature is actually being run (parasitically) by
this creature's CPU.

This screen is especially useful while avida is paused. The space bar

will cause the active creature to advance a single instruction, and the
return key will cause it to advance a full update. In this way, the execution
of the creature can be fully examined.

A.9 Configuring avida Runs

A.9 Configuring avida Runs

Avida runs can be setup in detail through the use of several different files;
a genesis file, a file defining the instruction set, one listing the events to
occur during the run, a creature file (which is used to initialize the soup),
and finally a file which indicates bonus levels for tasks. By default, these
files are (respectively))

genesis
inst_set.24.base
event_list
creature.base
task_set

A description of each of them follows.

The Genesis File

The genesis file initializes many variables within an avida run. The basic
format for the file is: <variable name> <value>

This file is split up in a number of sections, each of which contain a
selection of variables (described briefly within the actual file). Here we
attempt to fully detail the use of each variable.

The first section in the genesis file, “Architecture Variables’
determines the overall structure of the run. These settings are:

e MODE: This variable sets the geometry of the soup. Only two options
are available in version 1.0 of avida: mode 1 (a tierra emulator), and
mode 2 (the default avida).

e MAX_UPDATES: Determines the number of updates the run should last.
For a baseline, the default setup (50001 updates with a 60 x 60 world
and an average time slice of 30) will take about 5 hours on an unloaded
200MHz Pentium Pro. A value of 0 for this variable will prevent the
run from ever terminating by itself.

e WORLD_SIZE: This is used only in tiera mode. It will determine the
maximum number of creatures which should be in the population. By
default, this is set to 3600.

333

334

Appendix The avida User’s Manual

WORLD-X and WORLD-Y: These determine the dimensions of the lattice
in avida mode. By default, these are both 60, hence the popﬁlation has
3600 creatures in it. The minimum for each of these (due to some
algorithms used to speed up portions of avida) is 3.

RANDOM_SEED: This is a number off of which all of the randomness
in avida is based. If the seed is altered from one run to the next, the
runs will progress in different manners. On the other hand, a single
run can be repeated exactly by keeping the seed the same. For a seed
based on the current time, use 0 here.

The “Configuration Files” section of the genesis file determines

which other files should be used to configure the avida run. Note that
to change the genesis file used, use the command line option: -g
<genesis_filename>

DEFAULT_DIR: This is the directory where avida will look for the re-
maining configuration files. By default, ../work/ will be used (thus
any directory on the same level as work will find the configuration
files.) This should be changed to an absolute path, so that the config-
urations can be found if you run avida from anywhere else on your
system. Note that the genesis file must be in the same directory as
avida unless the -g option is used to specify its location on startup.

INST_SET: The instruction set file to be used for this run. This file
configures the assembly language used by the virtual CPUs. The de-
fault is inst_set.24.base. See later in this section for more details on
how the files are set up and which ones are available with the avida
distribution.

TASK_SET: The task set file to be used. This file configures the rewards
given to CPUs for performing specific tasks. The default is “task_set.”
See later in this section for more details on modifying this file.

EVENT_FILE: The event file contains a list of specific actions which
should occur during the run. The default file used is called
“event_list.” See later in this section for more details.

START_CREATURE: This*option designates the file of the ancestor pro-
gram which should be used to seed the soup. The default ancestor is
located in creature.base. See later in this section for information on
how creatures are stored in files.

A.9 Configuring avida Runs

The “Viewer” section has only a single variable; VIEW_MODE. This de-

termines the screen which the user interface initializes to when an avida
run is started. By default, it is blank to maximize the speed of the run,
but the options are 0 =BLANK, 1 =MAP, 2=STATS, 3 =HIST, 4=OPTIONS,
and 5=Z00M, each of which directly correspond to a view in avida.

The next three sections in the genesis file (“Reproduction,” “Muta-

tions,” and “Time Slicing”) are all quite important, as the variables there
can have a very large effect on runs, and as such each are described in
more detail in their own manual sections (A.4, A.6, and A.3 respectively).

The “Genotype Info” section controls what information we record

about genotypes and species. The variables are:

THRESHOLD: This value determines the number of creatures which
must be present in a genotype in order for it to be statistically inter-
esting. Typically this is set to 3; if a genotype does not have at least
3 members it probably cannot reproduce itself, and a non-replicating
genotype will be unlikely to have a full 3 members just by chance.

GENOTYPE_PRINT: This is a 0/1 on/off switch. When it is turned on, all
genotypes that become threshold will automatically be extracted to
the genebank directory. Each of these files will be small, but if a run
continues for a long time there can literally be millions of them, so
be careful!

SPECIES_PRINT: This works similar to the previous variable, but only
prints out the representative genotype every time a new species is
created. The files names are in the format: spec-<number>.

GENOTYPE_PRINT DOM: Again, this works similar to the previous two
variables, but it causes only the genotype which is currently dom-
inating the population to be extracted into the genebank directory.
Additionally, if a value larger than one is placed here, the genotype
would have to be dominant for at least that many consecutive updates
before it is printed. Hence a 10 would only have a genotype printed
after it was the most abundant in the soup for a full ten updates.

SPECIES_RECORDING: This setting determines if we should keep species
information during a run. Setting this variable to 0 turns this feature
off; switching to 1 keeps full information (i.e., every time a new thresh-
old genotype is created, it is checked against all current species to see
into which, if any, it best fits). Finally, setting this switch to 2 keeps

335

336

Appendix A The avida User’s Manual

limited information; it only compares the new threshold genotype to
the species of its parent genotype. In practice, settings 1 and 2 pro-
duce similar results as it is rare for multiple genotypes to evolve into
the same species independently. As setting 2 is significantly faster, it
is the default.

e SPECIES_THRESHOLD: When comparing two different genotypes to de-
termine if they are the same species, we cross them over at all possible
points and then count the number of times the hybrid creature fails
to reproduce. The value of SPECIES_THRESHOLD determines the max-
imum number of failures allowed for them to still be considered the
same species.

Finally, the “Data and Log Files” section determines if and how often
information should be added to various output files. For all files, a 0 next
to the appropriate variable indicates that the file should not be printed at
all. For the data and status files, a positive number indicates that the files
should have information added to them this set interval of updates. Most
of the data files have a default value of ten, and hence are updated every
tenth update. For log files, a tag other than 0 implies that this file should
be produced. See Section A.10 for more information on exactly what is
recorded in each of these files.

The Instruction Set File

The instruction set file is one of the simplest to modify. It consists of a list
of possible commands for the virtual assembly language, each witha 1 or
0 next to them determining if they should be included. Any instruction
not listed here will automatically be assumed to have a 0 next to it (so,
theoretically only the included instructions need to be in the list.)

Avida comes with a selection of default instruction set files that are
each for a specific purpose. Those files are:

e inst_set.24.base : This is the default instruction set, as described in
Section A.5.

e inst_set.24.const : The const instruction set prevents creatures
from changing their size. Instead of the allocate and divide in-
structions from the default set, they use c_alloc and c_divide which
prevent any size changes in the creatures.

A.9 Configuring avida Runs 337

e inst_set.25.error _check : The error-checking instruction set adds
the single instruction if-n-cpy to those available in the default set.
Higher mutation rates will actually cause creatures to learn to double
check all of their copies, and re-do those which have failed.

e inst_set.27.parasite : The parasite instruction set adds the com-
mands jump-p, rotate-r, and rotate-1 to the default one. This allows
creatures to select an adjacent creature as host (using the rotate in-
structions) and jump into its memory to execute its code. Do not use
the Death function (DEATH_METHOD = 0) with this instruction set.

For more information on how each instruction actually works, see
Section A.5.

The Event File

This file configures the events to occur during an avida run, by listing
the update it should happen at, the name of the event, and any relevant
arguments for it. The format is:

<update> <event-name> [<args>...]

As an example, if a creature named creature.happy is to be injected
at update number 42 into CPU 100, the following line should be added to
the file:

42 inject creature.happy 100
Only four types of events are enabled in avida version 1.0. Those are:
e cycle <cycle_length> <event>: Execute the <event> listed every

<cycle_length> updates.

e inject <filename> <cpu_num>: Put the creature located in <file-
name> into CPU number <cpu.num>.

e pause: Freeze the avida run in the viewer This will not work with
viewers that do not have the ability to pause.

e set_copymut <new.mut_rate>: Reset the copy mutation rates in all
the CPUs to <new_mut_rate>.

338

Appendix The avida User’s Manual

The Genebank Files

Avida comes with a selection of possible ancestor creatures to initialize (or
inject into) runs, located in the direetory genebank. These files include
the code of the creatures, and are often commented. Comments all start
with a # symbol; it and all of the text following are ignored when the
creatures are loaded into avida (as are blank lines). The creature files
which are included in avida are:

e creature.base : The default creature used in avida; 31 lines long.

e creature.error_check : This creature uses the error checking
instruction set to decrease its effective copy mutation rate.

e creature.host and creature.parasite : These creatures are a pair
such that the host is capable of self replication on its own while the
parasite only calculates its own size and then jumps into the host to
finish the remainder of its replication.

e creature.small : This is a small creature capable of self-replication
as described in Section A.5.

The Task File

The task_set file lists all of the possible bonuses that avida creatures can
receive, and the relative level (on an exponential scale) of that bonus. To
be exact, a bonus b multiplies a creature’s merit by 1 +2°~*. Thus a bonus
of 3 would double the merit, and 4 would multiply it by 3.

The file is set up so that each task in avida is listed, followed by the
bonus it should trigger for this run. After this (as comments), the meaning
of this task is given, as well as the minimum number of nands a program
would need to use to be able to complete the operation. The task_set file
is located by default in the work directory.

Command Line Options

There are five command line options implemented in version 1.0 of avida.
They are:

e —glenesis] <filename>: This option allows the use of a genesis file
other than the default genesis.

A.10 Guide to Output Files

e -h[elp]: This option simply lists all of the command line options
available in avida.

e -s[eed] <value>: Set random seed to the value given.

e -v([ersion]: This will give the version number for this avida. This
manual is written for avida version 1.0.0. The version ID is broken up
such that the first number is only changed if there is a major structural
revision, the second number is changed for all significant changes to
code, and the final number is changed every time there are bug fixes
implemented (thus, this manual should be good for all avida versions
1.0.x)

A.10 Guide to Output Files

The avida program generates a number of output files for the analysis of
the run. Which of the many possible output files are generated is specified
in the genesis file (see Section A.9). There are three different kinds of
output files produced by avida; data files, log files, and status files, all of
which will be discussed. The following overview is a guide to what the
data in these files represent.

Data Files

Data files are printed every fixed number updates (where the number is
configurable in the genesis file for each output file independently). Each
column in the data file represents a specific variable as defined below. In
the lists below, the number in front of a variable indicates the column of
the file where the particular measure can be found. Note that the fitness
(column 4 in the following two files) rises exponentially, so it is advised
to plot the logarithm of this quantity instead.

average.dat

All of the variables in this file are averages taken over all strings in the
population.

1. update number

2. avg. merit

339

340 Appendix The avida User’s Manual

avg. gestation time

avg. fitness

avg. replication rate

avg. size .
avg. copied size

avg. executed size

© @ NV AW

avg. births for a genotype per update
10. avg. genotype abundance

dominant.dat

The variables in this file represent metabolic data of the genotype cur-
rently dominating the soup. In many cases this genotype is simply the
most abundant in the soup and does not necessarily have a very clear
dominance.

update number

dom. merit

dom. gestation time

dom. fitness

dom. replication rate

dom. size

dom. copied size

dom. executed size

© ©o NN -

dom. births per update
dom. abundance

[R—
— O

. highest fitness

f—
N

. highest replication rate

—
w

. dominant name

stats.dat

This file collects various statistics of the population; typically they involve
all strings, but sometimes only the dominant.

A.10 Guide to Output Files 341

1. update number
2. energy (average inferiority) = logagom/ (@)
3. effective mutation probability (ave. creature)

1-(1-R¥
4. effective mutation probability (dom. creature)
1 — (1 — R)fer

—(€)log(1 — R) =~ R(¢)

—£4om log(1 — R) = Rédom

genotype change (in number from last update to this)
entropy of genotypes

© ® N> Ww

entropy of species

tasks.dat

This file counts the number of creatures in the soup which have com-
pleted the particular task. Columns represent specific tasks as listed
below.

update number

get count

put count

GGP (get get put) count

e woN o=

5+. task counts (tasks are in same order as on Stats screen).

count.dat

The file keeps a count of how many of each event or measure there are
at this update. Each column represents a different count.

update number

num. instructions executed

num. creatures

num. genotypes

num. threshold genotypes

num. species

NS ok WN -

num. threshold species

342

Appendix The avida User’s Manual

8. num. deaths
9. num. breed true

10. num. parasites

totals.dat

This file is similar to count.dat, but rather than per update, it measures
the total number of each event or measure over the course of the entire
run.

update number

total instructions executed

total creatures

total genotypes

total threshold genotypes

BN

total species

Log Files

Log files are printed whenever the event they are set to record occurs.
Each column in the log file has a specific meaning.

creature.log

This file is used to record every time a new creature is born or a creature
dies, and can be used to perfectly playback an avida run. The columns are

1. update number
2. cell ID# (location)
3. genotype 1D#

genotype.log

Entries are appended to this file every time a genotype dies. The following
information is included about each genotype:

A.10 Guide to Output Files

® NSO LD

update number

genotype ID

parent genotype ID (-1 for injected creatures)
parent genotype distance (-1 for injected creatures)
genotype abundance (from birth to extinction)
parasite abundance within genotype

genotype age

sequence length

threshold.log

New data are printed to this file each time a genotype reaches threshold
abundance. The specific information is:

swN

update number
genotype ID
species ID
name

species.log

New information is printed to this file every time a species dies.

@ 0ok W

update number

species ID

parent species ID

total threshold genotypes in species
total creatures in species

species age

breed.log

Entries are appended to this file every time a creature dies.

1.

update number

2. genotype ID
3.
4. age of creature

num. divides

343

344

Appendix A The avida User’s Manual

phylogeny.log
This file records information every time a creature divides.

update number
. child genotype ID
. parent genotype ID

AW N

child-parent genetic distance

Status Files

Information is added to these files at time intervals set in the genesis

file.

genotype.status

The status files are printed in a different format than the data or log files.
The file genotype. status prints “cross-sections” of the population at each
requested update. For each genotype, its ID number, current number of
living members, species ID, and sequence length is printed, separated
from another genotype by a colon. If there were only two genotypes at
update 50 for example, the entry would be

50 : 112130 : 17 41 30

which would indicate that at update 50 there were 12 creatures of geno-
type #1 (with sequence length 30) and 4 creatures of genotype #17, also
of sequence length 30, with both genotypes belonging to species # 1.

diversity.status

In this status file, genetic distances between members of the population
are listed. For each requested update (the frequency of output is selected
in the genesis file), the abundance of pairs of threshold creatures a
genetic distance d apart is listed in ascending order of genetic distance.
Thus, an entry

65 6695 348 348 1318 72 0 0 9 0 366

A.12 Glossary

reports that at update 65, there were 6695 pairs a distance 0 apart, 248
pairs which were one mutation distant from each other, another 348 pairs

two steps removed, etc., and finally 366 pairs at a genetic distance d = 9.

A.11 Summary of Variables

«; fitness of genotype i
agom fitness of dominant genotype
(e) fitness of average genotype

A; Dbirth rate of genotype i
H entropy

I inferiority

N

number of creatures in population
n; number of creatures in genotype i
t; gestation time

ta allocated time

M merit

A.12 Glossary

Abundance: The total number of sub-taxa within a taxon. For example,
we will commonly look at the total abundance of creatures within a
genotype, or the abundance of genotypes within a species.

Adaptive System: A system in which the population of programs will
evolve to optimize an extrinsic fitness function imposed on their en-
vironment. Typically these programs will have no direct interactions
with each other; they will only be evaluated for their fitness, and those
with the maximal fitness will be chosen to survive and propagate.

Ancestor: The creature used to initialize the population in an avida run.

Auto-Adaptive System: A system of self-replicating agents in an environ-
ment with an implicit fitness function. An agent's ability to interact
with both the environment and other agents will determine how
well it will be able to reproduce. Only indirect control over that
environment can be used to direct the evolution of these agents.

345

346 Appendix A The avida User's Manual

Birth Rate: The number of offspring per update a creature (or genotype)
is expected to have. This can be calculated approximately by

A= fitness * ave_time_slice = 2 {ta) (A.2)
" ave_merit -) Tm)

This value depends on the average merit (M), and hence on other
creatures currently in the environment. The inverse of this value is
the expected number of updates it would take for the creature to have
a child, given its current competition.

Cell: A single organism located at a lattice point in avida. A cell consists
primarily of a genome, and a CPU executing that genome.

Copied Size: The number of lines in a creature which were actually
copied into it from its parent. All lines which were not copied from
the parent are typically random.

Copy Mutation: A stochastic event occurring when copying a single line
of code from one point in memory space to another. Typically this
event affecting the copy instruction results in the instruction being
written to be different from the one that was read (while still being
a legal instruction). Other instructions that perform similar functions
(such as write) are subject to similar errors.

Cosmic-Ray Mutation: See Point Mutation.

CPU (Central Processing Unit): This is the machine that processes
the genome of a creature. It consists of a memory space, three regis-
ters, two stacks, a facing, I/0 buffers, and an instruction pointer. The
CPU will move through the instructions in memory, executing each
and then advancing. Most instructions (unless defined otherwise) will
deterministically alter the state of the CPU.

Creature: See Cell.

Effective Mutation Probability: The probability of a specific creature
(or its child) to be mutated in its attempt to copy itself.

Energy: A measure of the average inferiority in the soup (see Inferiority).

Entropy: A measure used to determine the disorder in the population,
according to Shannon Information Theory. In this measure, the prob-

ability of occurrence of a single genotype i, p;, is approximated by
n,-/N:

H=-Y Siog ™ (A.3)

A.12 Glossary

where n; is the current abundance of this genotype and N is the total
number of strings in the population.

Executed Size: The number of instructions in the genome of a creature
which are actually executed at least once during the course of its life-
time. A single nop used to modify the register an instruction interacts
with does count as an executed instruction, but full labels only have
their first nop counted (if these were counted in full, it could cause
creatures to have very long labels in order to increase their executed
size).

Fidelity: The probability for a string to correctly transmit its code to its
offspring. The fidelity F is just 1-P, where P is the error probability. If
only copy errors arise with probability R, the fidelity is

F=(1-R)¢, (A.4)

where £ is the length of the code. If insert and delete mutation occur
with probability P; and P; respectively, the effective fidelity is

F=(1-R'Q-P)Q-P) (A.5)

Fitness: A unit-less measurement of the replication ability of a particular
creature in a specified environment. By itself, fitness has little intrin-
sic meaning, but when compared to that of another creature it gives
a ratio of their respective replication rates. Specifically, to calculate
fitness, we take a creature’s merit and divide it by its gestation time.
(a = M/t;). Since merit increases exponentially with the number of
tasks acquired, fitness is best described by the log of its actual value
(see also Inferiority).

Genebank: A directory where the genome of hand-written as well as
extracted creatures is deposited.

Genome: The assembly language program used to define a creature. The
genome seeds the memory component of the CPU when a creature is
executed.

Genotype: A taxonomic level recorded in avida which represents all crea-
tures with a totally identical genome. Genotype is one of the standard
tools used to study avida, as all creatures of a particular genotype
should behave similarly given a fixed environment.

347

348 Appendix A The avida User’s Manual

Gestation Time: The number of instructions a creature must execute to
produce a single offspring. This is typically proportional to the length
of the creature. .

Inferiority: A measure which determines how much worse a particular
genotype is than the genotype which is currently dominating the
system. If a; > O represents the fitness of genotype i, its inferiority is
(this is the case in tierra)

I = apest — ;. (A'G)

In avida, fitness is taken as the logarithm of the actual (purely
computational) replication rate because merits are doled out using
an exponential scheme (see Fitness). In that case, the measure of
inferiority is

I; = log apest — loga; . (A7)

Instruction: A single command in the assembly language of the CPU.
When executed, an instruction modifies some of the parts of the CPU
in a deterministic fashion.

Instruction Set: The collection of instructions in the assembly language
the creatures are written in. Whenever an instruction is mutated, the
new instruction is chosen at random from the instruction set (with all
instructions given an equal probability of being selected).

Label: A sequence ofnops (no-operation instructions) in the genome that
are used to modify the instruction that precedes them. Typically they
are used to reference another point in the code where the complement
label is located.

Merit: A value indicating the amount of CPU time a particular creature
deserves (or has earned) taking into account its length and the tasks
that it has successfully completed.

Necrophilia: A term used to describe a form of crossover which goes on
in avida. This occurs when a creature only manages to copy part of
itself into space already containing the genome of a dead creature. In
effect,the two genomes are merged into a single unit.

Phenotype: A classification system that measures what a creature can
do without ever checking how it is done. In other words, the phenotype
reflects gestation time, tasks completed, and the like, but never takes
into account the actual source code (the genotype).

A.12 Glossary

Point Mutation: (Also called cosmic ray mutations). This form of mu-
tation is a random change from one instruction to another in the
memory space of a creature. This can occur at any time and is not
limited to whether the creature is executing a particular task, or even
executing at all.

Population: The collection of all of the active creatures on the lattice in
an avida run. This is sometimes also referred to as the soup.

Quasispecies: Also called the consensus sequence: the genotype ob-
tained by picking at each location the allele (instruction) which is
the most frequent in the population. This measure can strictly only
be defined for sequences of the same length. If the most abundant
genotype has more than 50 percent of the population, this genotype
automatically becomes the quasispecies. After equilibration, the con-
sensus sequence usually has zero or close to zero representatives in
the population (approach to the error threshold).

Replication Rate: The absolute speed at which a creature can self-
replicate, i.e., the number of offspring per unit time. This is simply
the inverse of the creature’s gestation time.

Self-Replication: The process a creature goes through in making an
exact copy of its genotype in a daughter cell.

Soup: See Population.

Species: A taxonomic level above genotype. All creatures in a species
are similar on a functional and structural level, but not necessarily
in all instruction positions on their genome. Species can be used to
study clouds around an archetype (quasispecies) in genome space.

Task: A feature imposed on the environment that can be triggered by
certain actions of a creature, which will in turn cause the merit (and
hence fitness) of that creature to increase.

Template: See Label; this term was more commonly used in tierra.

Threshold Genotype: A genotype which has reached a minimum abun-
dance specified in the genesis file. (By default, this minimum is
three). This is used to determine if the genotype is properly self-
replicating (since it would be very unlikely to observe this many
copies of a creature that could not properly copy itself). For this
reason, many statistics are only taken on threshold genotypes.

349

350

Appendix The avida User’s Manual

Time-slice: The number of instructions executed in a particular CPU
during a single update. By default (and in most avida configurations),
this is proportional to the merit of the organism in that CPU.

Time-slicer: The portion of code in avida which doles out time slices
to CPUs, and is responsible for executing the proper number of
instructions in those CPUs.

Unrolling the Loop: An evolutionary step the population will some-
times take to lower their gestation times. This process involves
copying two or more instructions each time through the copy loop
to minimize the effect of loop overhead.

Update: An artificial unit of time during which all creatures execute
their time-slice. All statistics about a creature are taken at the end of
each update.

References

Adami, C. (1994). On modeling life. Artificial Life 1, 429.

Adami, C. (1995a). Learning and complexity in genetic auto-adaptive
systems. Physica D 80, 154.

Adami, C. (1995b). Self-organized criticality in living systems. Phys. Lett.
A 203, 23.

Adami, C. and C.T. Brown (1994). Evolutionary learning in the 2D Artifi-
cial Life system “Avida” Proc. of Artificial Life IV; MIT July 6-8, 1994.
R. Brooks and P. Maes, Eds. (MIT Press, Cambridge, MA), p. 377.

Adami, C., C.T. Brown, and M.R. Haggerty (1995). Abundance distribu-
tions in Artificial Life and stochastic models: “Age and Area” revisited.
In Advances in Artificial Life. Proc. of 3d Europ. Conf. on Artificial
Life, Granada, Spain, June 4-6, 1995. Lecture Notes in Artificial In-
telligence Vol. 929. F. Moran, A. Moreno, J.J. Merelo, P. Chacén, Eds.
(Springer-Verlag, New York), p. 503.

Adami, C. and N.J. Cerf (1996). Complexity, computation, and measure-
ment. Proc. of 4th Workshop on Physics and Computation, Boston Univ.
Nov. 22-24, 1996. T. Toffoli, M. Biafore, and J. Leao, Eds. (New England
Complex Systems Institute), p. 7.

351

352

References

Adami, C. and N.J. Cerf (1997). Physical complexity of symbolic
sequences. To be published.

Adami, C. and H.G. Schuster (1997). Driving molecular evelution to the
error threshold. Unpublished.

Agladze, K. et al. (1993). Wave mechanisms of pattern formation in
microbial populations. Proc. Roy. Soc. Lond. B 253, 131.

Anderson, PW. (1983). Suggested model for prebiotic evolution: The use
of chaos. Proc. Natl. Acad. Sci. USA 80, 3386.

Badii, R. and A. Politi (1997). Complexity (Cambridge University Press).

Bak, P. (1996). How Nature Works: The Science of Self-Organized Criticality
(Springer-Verlag, New York).

Bak, P, K. Chen and C. Tang (1990). A forest-fire model and some thoughts
on turbulence. Phys. Lett. A 147, 297.

Bak, P. and K. Sneppen (1993). Punctuated equilibrium and criticality in
a simple model of evolution. Phys. Rev. Lett. 71, 4083.

Bak, P, C. Tang, and K. Wiesenfeld (1987). Self-organized criticality: An
explanation of 1/f noise. Phys. Rev. Lett. 59, 381.

Bak, P, C. Tang, and K. Wiesenfeld (1988). Self-organized criticality. Phys.
Rev. A 38, 364.

Bartel, D.P. and J. Szostak (1993). Isolation of new ribozymes from a large
pool of random sequences. Science 261, 1411.

Basharin, G.P. (1959). On a statistical estimate for the entropy of a se-
quence of independent random variables. Theory Probability Appl. 4,
333.

Bauer, G.J., J.S. McCaskill, and H. Otten (1989). Travelling waves of in
vitro evolving RNA. Proc. Natl. Acad. Sci. USA 86, 7937.

Becker, T, H. de Vries, and B. Eckhardt (1995). Dynamics of a
stochastically driven running sandpile. J. Nonlin Sci. 5, 167.

Bennett, C.H. (1973). Logical reversibility of computation. IBM]. Res. Dev.
17, 525-532.

Bennett, C.H. (1982). The thermodynamics of computation—A review.
Int. J. Theor. Phys. 21, 905-940.

Bennett, C.H. (1995). Universal computation and physical dynamics.
Physica D 86, 268.

References

Berlekamp, E., J.H. Conway, and R. Guy (1982). Winning Ways for Your
Mathematical Plays (Academic Press, New York).

Bonabeau, E.W. and G. Theraulaz (1994). Why do we need Artificial Life?
Artificial Life 1, 303.

Brown, T.A., Ed. (1991). Molecular Biology LABFAX (BIOS Scientific,
Oxford, England).

Burlando, B. (1990). The fractal dimension of taxonomic systems. J. Theor.
Biol. 146, 99.

Burlando, B. (1993). The fractal geometry of evolution. J. Theor. Biol. 163,
161.

Campi, X. (1987). Introduction a la théorie des modéles de formation
d’amas. In Au-dela du champ moyen, Notes de cours de 'école Joliot-
Curie de Physique Nucléaire, Maubuisson, Gironde, 14-18 Septembre,
1987, 166.

Carlson, J.M, J.T. Chayes, E.R. Grannan, and G.H. Swindle (1990). Self-
organized criticality and singular diffusion. Phys. Rev. Lett. 65, 2547.

Carlson, J.M, E.R. Grannan, C. Singh, and G.H. Swindle (1993).
Fluctuations in self-organizing systems. Phys. Rev. E 48, 668.

Cerf, N.J. and C. Adami (1997). Negative entropy and information in
quantum mechanics. Phys. Rev. Lett. 79, 5194.

Chaitin, G.J. (1966). On the length of programs for computing finite
binary sequences. J]. ACM. 13, 547.

Chu, J. and C. Adami (1997). Propagation of information in populations
of self-replicating code. Proc. of Artificial Life V, Nara, Japan, May 16-
18, 1996. C.G. Langton and K. Shimohara, Eds. (MIT Press, Cambridge,
MA), p. 462.

Codd, E.F. (1968). Cellular Automata (Academic Press, New York).

Cross, M.C. and P.C. Hohenberg (1993). Pattern formation outside of
equilibrium. Rev. Mod. Phys. 65, 851.

Derrida, B. (1981). Random-energy model: An exactly solvable model of
disordered systems. Phys. Rev. B 24, 2613.

Dewdney, A. (1984). In the game called Core War hostile programs engage
in a battle of bits. Sci. Amer. 250/5, 14.

353

354

References

Dobzhansky, T. and S. Wright (1943). Genetics of natural populations. X.
Dispersion rate in Drosophila pseudoobscura. Genetics 28, 304.

Domingo, E., R.A. Flavell, and C. Weissmann (1976). In vitro site-directed
mutagenesis: Generation and properties of an infectious extracistronic
mutant of bacteria QB. Gene 1, 3.

Domingo, E., E. Sabo, T. Taniguchi, and C. Weissmann (1978). Nucleotide
sequence homogeneity of an RNA phage population. Cell 13, 735.

Domingo, E., M. Davila, and J. Ortin (1980). Nucleotide sequence hetero-
geneity of the RNA from a natural population of foot-and-mouth-disease
virus. Gene 11, 333.

Drossel, B. and F. Schwabl (1992). Self-organized criticality in a forest-fire
model. Physica A 191, 47.

Edwards, S.F. and PW. Anderson (1977). Theory of spin-glasses. J. Phys. F
5, 965.

Eigen, M. (1971). Self-organization of matter and the evolution of
biological macromolecules. Naturwissenschaften 58, 465.

Eigen, M. (1978). How does information originate? Principles of biological
self-organization. Adv. in Chem. Phys. 33, 211.

Eigen, M. (1985). In Disordered Systems and Biological Organization. E.
Bienenstock, F. Fogelman, and G. Weisbuch, Eds. (Springer-Verlag,
Berlin), p. 25.

Eigen, M. (1986). The physics of molecular evolution. Chemica Scripta
26B, 13.

Eigen, M., B.F. Lindemann, M. Tietze, R. Winkler-Oswatitsch, A. Dress,
and A. von Haseler (1989). How old is the genetic code? Statistical
geometry of tRNA provides an answer. Science 244, 673.

Eigen, M., J. McCaskill, and P. Schuster (1989). The molecular quasi-
species. Adv. in Chem. Phys. 75, 149.

Eigen, M. and P. Schuster (1979). The Hypercycle—A Principle of Natural
Self-Organization (Springer-Verlag, Berlin).

Ekland, E.H., J.W. Szostak, and D.P. Bartel (1995). Structurally complex
and highly-active RNA ligases derived from random RNA sequences.
Science 269, 364.

Fisher, R.A. (1937). The wave of advance of advantageous genes. Ann.
Eugen. 7, 355.

References

Fontana, W. and L.W. Buss (1994). “The arrival of the fittest": Toward a
theory of biological organization. Bull. Math. Biol. 56, 1.

Fontana, W., PF. Stadler, E.G. Bornberg-Bauer, T. Griesmacher, Ivo L.
Hofacker, M. Tacker, P. Tarazona, E.-W. Weinberger, and P. Schuster
(1993). RNA folding and combinatory landscapes. Phys. Rev. E 47, 2083.

Foster, PL. and J. Cairns (1992). Mechanisms of directed mutation.
Genetics 131, 783.

Gaylord, R.J. and P.R. Wellin (1995). Computer Simulations with Mathemat-
ica (Springer-Verlag, New York).

Gaylord, R.J. and K. Nishidate (1996). Modeling Nature: Cellular Automata
Simulations with Mathematica (Springer-Verlag, New York).

Gil, L. and D. Sornette (1996). Landau-Ginzburg theory of self-organized
criticality. Phys. Rev. Lett. 76, 3991.

Goss S., J.-L. Deneubourg, R. Beckers, and J.-L. Henrotte, Eds. (1993).
Recipes for collective movement. In Proc. of the 2d Conf. on Artificial
Life, Université Libre de Bruxelles, Brussels, p. 400.

Gould, S.J. and N. Eldredge (1977). Punctuated equilibria: The tempo and
mode of evolution reconsidered. Paleobiology 3, 115.

Gould, S.J. and N. Eldredge (1993). Punctuated equilibrium comes of age.
Nature 366, 223.

Grassberger, P. and H. Kantz (1991). On a forest fire model with supposed
self-organized criticality. J. Stat. Phys. 63, 685.

Hager, A.J., 1.D. Pollard, and J.W. Szostak (1996). Ribozymes— Aiming at
RNA replication and protein synthesis. Chem. Biol. 3, 717.

Haldane, J.B.S. (1929). The Origin of Life (Rationalist Annual).

Hofacker, 1.L., W. Fontana, PF. Stadler, and P. Schuster. Vienna RNA
Package. Available by FTP from ftp.itc.univie.ac.at

Hopfield, J.J. (1982). Neural networks and physical systems with emer-
gent collective computational abilities. Proc. Nat. Acad. Sci. USA 79,
2554.

Hull, D.B. (1995). Naming and classifying computer viruses. Unpublished.

Huynen, M., PF. Stadler, and W. Fontana (1996). Smoothness within
ruggedness: The role of neutrality in adaptation. Proc. Nat. Acad. Sci.
USA 93, 397.

355

356

References

Kadanoff, L.P, S.R. Nagel, L. Wu, and S. Zhou (1989). Scaling and
universality in avalanches. Phys. Rev. A 39, 6524.

Kauffman, S.A. (1993). The Origins of Order (Oxford University Press,
Oxford).

Kauffman, S.A. and S. Johnsen (1991). Coevolution to the edge of
chaos—Coupled fitness landscapes, poised states, and coevolutionary
avalanches. J. Theor. Biol. 149, 467.

Kauffman, S. and S. Levin (1987). Towards a general theory of adaptive
walks on rugged landscapes. J. Theor. Biol. 128, 11.

Klafter, J., M.F. Shlesinger, and G. Zumofen (1996). Beyond Brownian
motion. Physics Today 49/2, 33.

Koch, A.L. (1996). What size should a bacterium be—A question of scale.
Ann. Rev. Microbiol. 50, 317.

Kolmogorov, A.N. (1965). Three approaches to the definition of the
concept “quantity of information” Probl. Inform. Transmisssion 1, 1.

Kolmogorov, A.N. (1983). Combinatorial foundations of information
theory and the calculus of probabilities. Russian Math. Surveys 38, 29.

Landau, L.D. and E.M. Lifshitz (1980). Statistical Physics, 3d Edition Part 1
(Pergamon Press).

Landauer, R. (1961). Irreversibility and heat generation in the computing
process. IBM]J. Res. Dev. 5, 183.

Landauer, R. (1991). Information is physical. Physics Today 44(5), 23-29.

Langton, C.G. (1984). Self-reproduction in cellular automata. Physica D
10, 135.

Langton, C.G. (1986). Studying Artificial Life with cellular automata.
Physica D 22, 120.

Langton, C.G., Ed. (1989). Artificial Life. Proc. of an interdisciplinary work-
shop on the synthesis and simulation of living systems, Los Alamos,
NM 1988 (Addison-Wesley, Redwood City, CA).

Langton, C.G. (1992). Life at the edge of chaos. In Artificial Life II,
Ref. [Langton et al., 1992a), p. 41.

Langton, C.G., C. Taylor, J.D. Farmer, and S. Rasmussen, Eds. (1992a). Arti-
ficial Life II, Proc. of an interdisciplinary workshop on the synthesis and

References

simulation of living systems, Los Alamos, NM 1990 (Addison-Wesley,
Redwood City, CA).

Langton, C.G., Ed. (1995). Artificial Life: An Overview (MIT Press,
Cambridge, MA).

Leff, H.S. and A.F. Rex, Eds. (1990) Maxwell's Demon: Entropy, Information,
Computing (Princeton University Press, Princeton, NJ).

Lenski, R.E. and J.E. Mittler (1993). The directed mutation controversy
and neo-Darwinism. Science 259, 188.

Leuthdusser, 1. (1986). An exact correspondence between Eigen's evo-
lution model and a two-dimensional Ising system. J. Chem. Phys. 84,
1884.

Leuthdusser, 1. (1987). Statistical mechanics of Eigen's evolution model.
J. Stat. Phys. 48, 343.

Levenstein, V.I. (1966). Binary codes capable of correcting deletions,
insertions, and reversals. Control Theory 10, 707.

Luisi, PL., P. Walde, and T. Oberholzer (1994). Enzymatic RNA synthesis in
self-reproducing vesicles: An approach to the construction of a minimal
cell. Ber. Bunsenges. Phys. Chem. 98, 1160.

Maes, P. (1994). Modeling adaptive autonomous agents. Artificial Life 1,
135.

MacArthur, R.H. and E.O. Wilson (1967). The Theory of Island Biogeography
(Princeton University Press, Princeton, NJ).

Mandelbrot, B. (1977). The Fractal Geometry of Nature (Freeman, San
Francisco).

Maniloff, J. (1997). Nanobacteria: size limits and evidence. Science 276,
1776.

Mattis, D.C. (1976). Solvable spin system with random interactions. Phys.
Lett. 56A, 421.

Maxwell, J.C. (1871). Theory of Heat (Longmans, London).

Maynard Smith, J. (1970). Natural selection and the concept of a protein
space. Nature 225, 563.

Mayr, E. (1970). Populations, Species, and Evolution (Harvard University
Press, Cambridge, MA).

357

358

References

McCaskill, J.S. and G.J. Bauer (1993). Images of evolution—Origin of
spontaneous RNA replication waves. Proc. Natl. Acad. Sci. USA 90, 4191.

McCulloch, W.H. and W. Pitts (1943). A logical calculus of the ideas
immanent in nervous activity. Bull. Math. Biophys. 5, 115.

McKay, D.S., E.K. Gibson Jr., K.L. Thomas-Keprta, H. Vali, C.S. Romanek,
S.J. Clemett, X.D.F. Chillier, C.R. Maechling, and R.N. Zare (1996).
Search for past life on Mars: Possible relic biogenic activity in Martian
meteorite ALH84001. Science 274, 924.

Mézard, M., G. Parisi, and M.A. Virasoro (1987). Spin Glass Theory and
Beyond (World Scientific, Singapore).

Miller, S. (1953). A production of amino acids under possible primitive
earth conditions. Science 117, 528.

Mills, D.R., R.L. Peterson, and S. Spiegelman (1967). An extracellular
Darwininan experiment with a self-duplicating nucleic acid molecule.
Proc. Natl. Acad. Sci. USA 58, 217.

Morowitz, H.J. (1992). Beginnings of Cellular Life (Yale University Press,
New Haven, CT), p. 60.
Newman, M.E.J., S.M. Fraser, K. Sheppen, and W.A. Tozier. (1997). Com-

ment on “Self-organized criticality in living systems” by C. Adami. Phys.
Lett. A 228, 201.

Oparin. A.L (1938). The Origin of Life (Macmillan, New York).

Pargellis, A.N. (1996a). The spontaneous generation of digital life. Physica
D 91, 86.

Pargellis, A.N. (1996b). The evolution of self-replicating computer
organisms. Physica D 98, 111.

Pesavento, U. (1995). An implementation of von Neumann’s self-
reproducing machine. Artificial Life 2, 337.

Rasmussen, S., C. Knudsen, R. Feldberg, and M. Hindsholm (1990). The
Coreworld: Emergence and evolution of cooperative structures in a
computational chemistry. Physica D 42, 111.

Rasmussen, S. and C.L. Barrett (1995). Elements of a theory of simulation.
In Advances in Artificial Life. Proc. of 3d Europ. Conf. on Artificial Life,
Granada, Spain, June 4-6, 1995, Lecture Notes in Artificial Intelligence
Vol. 929. (Springer-Verlag, New York), p. 515.

References

Raup, D.M. (1986). Biological extinction in earth history. Science 231,
1528.

Raup, D.M. and J.J. Sepkoski (1986). Periodic extinction of families and
genera. Science 231, 833.

Ray, T. (1992). An approach to the synthesi§ of life. In Artificial Life II,
Ref. [Langton et al., 1992a), p. 371.
Ray, T. (1995). A proposal to create a network-wide biodiversity reserve
for digital organisms. ATR Technical Report TR-H-133 (unpublished).
Reggia, J.A., S.L. Armentrout, H.-H. Chou, and Y. Peng (1993). Simple
systems that exhibit self-directed replication. Science 259, 1282.

Schmoltzi, K. and H.G. Schuster (1995). Introducing a real time scale into
the Bak-Sneppen model. Phys. Rev. E 52, 5273.

Schrédinger, E. (1945). What Is Life? (Cambridge University Press).

Shannon, C.E. and W. Weaver (1949). The Mathematical Theory of
Communication (University of Illinois Press, Urbana).

Sims, K. (1994). Evolving 3D morphology and behavior by competition.
Artificial Life 1, 353.

Sorkin, G.B. (1988). Combinatorial optimization, simulated annealing,
and fractals. IBM Research Report RC13674 (No. 61253).

Sornette, D., A. Johansen, and 1. Dornic (1995). Mapping self-organized
criticality to criticality. J. de Phys. I 5, 325.

Spafford, E. (1994). Computer viruses as Artificial Life. Artificial Life 1,
249.

Stauffer, D. (1979). Scaling theory of percolation clusters. Phys. Rep. 54, 1.

Szilard, L. (1929). Uber die Entropieverminderung in einem thermody-
namischen System bei Eingriffen intelligenter Wesen. Z. Phys. 53, 840;
translated in J.A. Wheeler and W.H. Zurek, Eds. (1983). Quantum The-
ory and Measurement (Princeton University Press, Princeton, NJ), p.
539.

Tarazona, P. (1992). Error thresholds for molecular quasi-species as phase
transitions: From simple landscapes to spin-glass models. Phys. Rev. A
45, 6038.

Terzopoulos, D., X. Tu, and R. Grzesczuk (1994). Artificial fishes:
Autonomous locomotion, perception, behavior, and learning in a
simulated world. Artificial Life 1, 327.

359

360

References

Theraulaz, G. and E.W. Bonabeau (1995). Coordination in distributed
building. Science 269, 687.

Turing, A. (1936). On computable numbers, with an application to the
Entscheidungsproblem. Proc. Lond. Math. Soc. Ser. 2 43, 544; 42, 230.

von Neumann, J. (1951). The general and logical theory of automata. In
Cerebral Mechanisms in Behavior—The Hixon Symposium (John Wiley,
New York).

Webb, B. (1996). A cricket robot. Sci. Am. 275 (December), 94.

Weinberger, E.D. and PF. Stadler (1993). Why some fitness landscapes are
fractal. J. Theor. Biol. 163, 255.

West, B.J. (1995). Fractal statistics in biology. Physica D 86, 12.

Willis, J.C. (1922). Age and Area (Cambridge University Press, Cambridge,
UK).

Wolfram, S. (1983). Statistical mechanics of cellular automata. Rev. Mod.
Phys. 55, 601.

Wolfram, S. (1984). Universality and complexity in cellular automata.
Physica D 10, 1.

Wright, M.C. and G.F. Joyce (1997). Continuous in vitro evolution of
catalytic function. Science 276, 614.

Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding and
selection in evolution. In Proc. of the 6th Intern. Congress on Genetics
Vol .1, p. 356.

Yin, J. and J.S. McCaskill (1992). Replication of viruses in a growing
plaque—A reaction-diffusion model. Biophys.]. 61, 1540.

Zurek, W.H. (1990). Algorithmic information content, Church-Turing the-
sis, physical entropy, and Maxwell’s demon. In Complexity, Entropy and
the Physics of Information, SFI Studies in the science of complexity, vol.
VIII, W.H. Zurek, Ed. (Addison-Wesley, Redwood City, CA), p. 73.

INTRODUCTION TO

ARTIFICIAL LIFE

REGISTRATION CARD

Since this field is fast-moving, we expect updates and changes to occur that might neces-
sitate sending you the most current pertinent information by paper, electronic media,
or both, regarding Introduction to Artificial Life. Therefore, in order to not miss out on
receiving your important update information, please fill out this card and return it to us
promptly. Thank you.

Name:

Title:

Company:

Address:

City: State: Zip:

Country: Phone:

E-mail:

Areas of Interest/Technical Expertise:

Comments on this Publication:

(J Please check this box to indicate that we may use vour comments in our promotion
and advertising for this publication.

Purchased from:
Date of Purchase:

(J Please add me to your mailing list to receive updated information on Introduction to
Artificial Life and other TELOS publications.

J Thavea 0O IBM compatible 0O Macintosh 0O UNIX 0O other

Designate specific model

THE
ELECTRONIC

® LIBRARY
ELOS :
! SCIENCE

Return your postage-paid registration card today!

TIHH ddVL ASVd1d

HIIH dTOd

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 5863 NEW YORK, NY
POSTAGE WILL BE PAID BY ADDRESSEE

e
Y-
scuvcs
ELOS :
TELOS PROMOTION
SPRINGER-VERLAG NEW YORK, INC.
ATTN: J. Roth
175 FIFTH AVENUE
NEW YORK NY 10160-0266

