
Draining	the	
Swamp
Micro	Virtual	Machines	as	Solid	Foundation	
for	Language	Development

why	languages	suck
(and	what	we	are	doing	about	it…)

Tony	Hosking
channeling	Steve	Blackburn
and	KunshanWang

semantics
(can	I	make	the	computer	do	what	I	want	it	to?)

what	could	possibly	go	wrong?

but	aren’t	computer	languages	precise?

0

0.001

0.002

0.003

0.004

0.005

0.006

Co
m
m
en
ts
	w
ith

	"
W
TF
"/
re
po

*

Source:	Phil	Johnson,	 IT	World,	25/9/13*these	numbers	 are	actually	pretty	 meaningless,	 but	the	 graph	makes	a	point

let’s	do	a	little	programming…

a	little	js…
$ jsc

[] + []

[] + {}

>

>
[object Object]
> {} + []
0
> {} + {}
NaN

Source:	Gary	Bernhardt	CodeMash 2012

a	little	more	js…
$ jsc

Array(14)

Array(14).join("foo")

>

>
foofoofoofoofoofoofoofoofoofoofoofoofoofoo
> Array(14).join("foo" + 1)

> Array(14).join("foo" - 1)
NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN Batman!

Source:	Gary	Bernhardt	CodeMash 2012

,,,,,,,,,,,,,,

foo1foo1foo1foo1foo1foo1foo1foo1foo1foo1foo1foo1foo1foo1
+ " Batman!"

some	php…
<?php
$A = array();
$A[0] = 5;

echo "A[0]: $A[0]";
?>

A[0]: 5

$A
0
1
2
3

5

some	php…
<?php
$A = array();
$A[0] = 5;

echo "A[0]: $A[0]";
?>

$C = $A;
$C[0] = 10;

A[0]: 5

5

$A
0
1
2
3

$C
0
1
2
3

5

10

In PHP, variables are always assigned by value. That is to
say, when you assign an expression to a variable, the
entire value of the original expression is copied into the
destination variable. This means, for instance, that after
assigning one variable's value to another, changing one of
those variables will have no effect on the other.

some	php…
<?php
$A = array();
$A[0] = 5;

$C = $A;
$C[0] = 10;

echo "A[0]: $A[0]";
?>

$b = &$A[0];

A[0]: 10

5$b

$A
0
1
2
3

$C
0
1
2
3

5

10

some	php…
<?php
$A = array();
$A[0] = 5;
$b = &$A[0];
$C = $A;

$C[0] = 10;

echo "A[0]: $A[0]";
?>

unset($b);

A[0]: 5

5$b

$A
0
1
2
3

$C
0
1
2
3

5

105

POPL’09

performance
(speed,	correctness,	reliability)

int NUM = 111181111;

int is_prime(int n) {
int i;
for(i = 2; i < n; i++) {
if (n % i == 0) {
return 0;

}
}
return 1;

}

NUM = 111181111

def is_prime(n):
i = 2
while i < n:

if n % i == 0:
return False

i += 1

return True

0.624s 15.609s

25X	difference!

<?
gc_disable();
...

?>

100%	performance	
improvement

http://php.net/manual/en/function.gc-disable.php

1

10

100

1000

C++	g++ Fortran C	gcc Ada Lisp Haskell	
GHC

Java	7 Go C#	mono Erlang PHP Ruby	
jruby

Perl Python

el
ap
se
d	
tim

e/
be
st
	(l
og
)

spectral-norm*

Source:	http://benchmarksgame.alioth.debian.org*these	numbers	 are	actually	pretty	 meaningless,	 but	the	 graph	makes	a	point

1

10

100

1000

Fortran C++	g++ C	gcc Ada Haskell	
GHC

Java	7 C#	
mono

Go Lisp Erlang PHP Python Ruby Perl

el
ap
se
d	
tim

e/
be
st
	(l
og
)

mandelbrot*

Source:	http://benchmarksgame.alioth.debian.org*these	numbers	 are	actually	pretty	 meaningless,	 but	the	 graph	makes	a	point

1

10

100

1000

C	gcc C++	g++ Lisp Ada Go Java	7 C#	mono Haskell	
GHC

Erlang Ruby	
jruby

Python Perl

el
ap
se
d	
tim

e/
be
st
	(l
og
)

chameneos-redux*

Source:	http://benchmarksgame.alioth.debian.org*these	numbers	 are	actually	pretty	 meaningless,	 but	the	 graph	makes	a	point

the	cost	is	formidable
maintenance	cost

debugging	wtf is	costly
performance	cost	of	10-100x

sluggish	apps
inefficient	servers

energy	cost
energy	bills	for	server	farms
battery	performance	on	mobile	devices

why?

too	hard
difficult	concepts

concurrency	(so	punt	and	go	for	the	GIL)
garbage	collection	(so	punt	and	go	for	naïve	RC)

difficult	to	engineer
copy-on-write	(so	punt	and	call	odd	semantics	a	feature)

insidious	orders	of	ignorance
when	you	don’t	know	what	you	don’t	know

reference	counting	seems	easy
cool,	we	can	use	it	to	implement	copy-on-write!
its	performance	seems	OK	(in	our	v00.1	VM)

developers	can	deal	with	cycles	(programs	will	be	small)

swamp	of	naïve	implementation
when	you	don’t	know	how	bad	you	are

gc is	not	a	problem	for	us	(we	measured	it)
a	24-byte	object	header	is	OK	(we	measured	it)
rc incs and	decs don’t	cost	much	(we	measured	it)

what’s	so	hard?

jit concurrency gc

jit +	concurrency	+	gc

language/impl jit? concurrency gc

CPython interpreted GIL naive	RC

PyPy tracing	jit GIL MMTk-like

Unladen Swallow template	jit same	as	CPython same	as	CPython

Jython jvm byte-code jvm jvm

PHP interpreted ? naive	RC

PHP	(HHVM) tracing	jit ? naive	RC

Ruby	(MRI) interpreted GIL mark-sweep

Perl interpreted ? naive	RC

Lua interpreted no	threads mark-sweep

LuaJIT tracing	JIT same	as	Lua same	as	Lua

the	result…

the	result…

I don’t know how to stop it, there was never
any intent to write a programming language
[...] I have absolutely no idea how to write
a programming language, I just kept adding
the next logical step on the way.

Rasmus Lerdorf, creator of PHP

existing	approaches

LLVM?#%!?

how	did	we	get	here?

Moore’s	law
‘Transistor	density	will	double	 approximately	every	two	years.’

Dennard scaling

Dennard,	Gaensslen,	Yu,	Rideout,	Bassous and	Leblanc,	IEEE	SSC,	1974

‘As	MOSFET	features	shrink,	 switching	time	and	power	consumption	 will	fall	proportionately.’

…however…

Dennard,	Gaensslen,	Yu,	Rideout,	Bassous and	Leblanc,	IEEE	SSC,	1974

Dennardscaling
‘As	MOSFET	 features	 shrink,	switching	time	and	power	consumption	will	fall	proportionately.’

Moore’s	Law
‘Transistor	density	will	double	approximately	 every	 two	years.’

✗✓

how	are	things	looking	now?

managed	languages
+

heterogeneity
=
?

July	31,	1922.	Train	wreck	at	Laurel,	 Maryland	[Washington	 Post,	 August	1,	1922]

recap

recap
languages	suck
concurrency	+	gc +	jit =	headache
instant	gratification	+	orders	of	ignorance
free	lunch	gone
heterogeneity	is	here

Dennard,	 Gaenss len,	 Yu,	 Rideout ,	 Bassous and	 Leblanc,	 I EEE	 SSC,	
1974

Dennard scaling
‘As	 MOSFET	 f eat ur es 	shr ink,	 swit ching	 t im e	 and	 power 	 consum pt ion	 will	 f all	 pr opor t ionat ely. ’

✗

what	to	do?

microvm
microvm.org

ANU

Kunshan Wang

Yi	Lin

Steve	Blackburn

Tony	Hosking

NICTA

Michael	Norrish

UMass

Eliot	Moss

Tim	Richards

Adam	Nelson

analogous	to	microkernels
application

hardware

device	drivers

scheduler,	virtual	memory

IPC,	file	system

system	calls

hardware

basic	IPC,	scheduling,
virtual	memory

application

ap
pl
ic
at
io
n	
IP
C

U
N
IX
	s
er
ve
r

de
vi
ce
	d
riv

er

fil
e	
se
rv
er

monolithic	kernel µ	kernel

micro	virtual	machines
application

hardware

threads,	JIT,	GC

interpreter

class	loader

libraries

hardware

concurrency/LL	 JIT/GC

application

cl
ie
nt
	li
br
ar
ie
s

cl
ie
nt
	c
on

cu
rr
en
cy
	

ab
st
ra
ct
io
ns

cl
ie
nt
	d
at
a	

ab
st
ra
ct
io
ns

cl
ie
nt
	JI
T

monolithic	VM µVM

amicrovm
very	small
low-level
substrate	for	language	implementation
goal	of	a	formally	verified	implementation
just	three	abstractions

memory
concurrency
architecture

only	implement	what	is	essential;	client	does	the	rest

compared	to…
llvm

very	small	(no	heavyweight	opts)
targets	managed	languages	(dynamic,	gc’d)
concurrency	and	threading	model	built	in

jvm
very	small	(no	heavyweight	opts)
much	lower-level	of	abstraction
ssa

challenges
getting	the	abstraction	right

keeping	it	simple	(yet	rich	&	performant)

support	for	speculative	opt	&	osr
right	concurrency	abstractions

getting	portability	right
what	to	expose	(endianness,	word	width)
what	to	support	(simd,	htm)

formal	verification	(a	la	seL4)
a	central	goal	of	the	project
has	influenced	design

reinforced	simplicity,	clarity

status	(June	2016)
full	spec	v	0.02
formal	spec	underway

full	reference	implementation	v	0.02
performance	implementation	v	0.02	underway
implemented	 in	Rust	(see	ISMM’16)

client	language	bindings
Haskell	->	bf	(working),	GHC	(underway)
RPython ->	python	(underway),	 running	SOM	interpreter

details
types,	threads	&	stacks,	native	interface

.typedef @i64 = int<64>

.const @I64_1 <@i64> = 1

.funcsig @i_i = @i64 (@i64)

.funcdef @fac VERSION @fac_v1 <@i_i> {
%entry(<@i64> %n):

%zero = EQ <@i64> %n @I64_0
BRANCH2 %zero %iszero() %notzero(%n)

%iszero():
RET @I64_1

%notzero(<@i64> %n):
%nm1 = SUB <@i64> %n @I64_1
%rec = CALL <@i_i> @factorial_rec (%nm1)
%result = MUL <@i64> %n %rec
RET %result

}

types
C
int float	double
void*	void	(*)()
__m128
struct {…}	struct	{…,	T[]}	T[n]

NO	REF	TYPES

µ
int<n>	float	double
uptr<T>	ufuncptr<Sig>
vector<T	n>
struct<T	…>	hybrid<F…	V>	array<T	n>
ref<T>	iref<T>
funcref<Sig>	 stackref
threadref

threads	and	stacks
distinct	abstractions
threads	can	swap	stacks:
%result = SWAPSTACK %stack

RET_WITH <T>
PASS_VALUES <U> (%val)

continuations,	coroutines,	 lightweight	threads

threads	and	stacks
threads	can	trap:
%trap2	=	TRAP	<T>	%exc()	KEEPALIVE(%a	%b)

threads	trap	at	enabled watchpoints
WATCHPOINT	42	<>	%dis()	%ena()	%exc()

KEEPALIVE(%a)

introspection	API	for	stacks
new_stack(Function f)
top_frame(Stack s)

next_frame(Frame frm)
enable_watchpoint(int i)

cur_func(Frame frm)
cur_inst(Frame frm)

pop_frames_to(Frame frm)
push_frame(Function f)

threads	and	stacks
swapstack +	traps	+	introspection:
OSR
guards
dynamic	optimization
profiling

atomics	and	synchronization
C11-style	atomics
similar	to	LLVM
also	futex

basis	for	client	synchronization	 abstractions

unsafe	native	interface
(raw,	untraced)	pointers
uptr<T>
LOAD/STORE via	pointers

function	pointers	(to	C	functions)
ufuncptr<Sig>
CCALL:	call	native	function	directly

other	work
transactional	memory	primitives
abstract	logging	and	rollback
exploits	best-effort	HTM	where	possible

formalisation	effort	in	HOL4
verification	of	Mu	implementations
well-defined	client	semantics

thank	you

questions?

